Welcome guest, Login | Register

Home

X
加载中

Western blotting allows for the specific detection of proteins and/or modifications of proteins by an antibody of interest. This protocol utilizes a crude nuclei extraction protocol for Aspergillus nidulans to enrich for histones and other nuclear proteins prior to gel electrophoresis. Post translational modifications of histones may then be easily detected. After electrophoresis, the selected antibodies are used to detect and quantify levels of the modifications of interest.

Thanks for your further question/comment. It has been sent to the author(s) of this protocol. You will receive a notification once your question/comment is addressed again by the author(s).
Meanwhile, it would be great if you could help us to spread the word about Bio-protocol.

X

Western Analysis of Histone Modifications (Aspergillus nidulans)

Molecular Biology > Protein > Detection
Authors: Alexandra Soukup
Alexandra SoukupAffiliation: Department of Genetics, University of Wisconsin, Madison, USA
Bio-protocol author page: a532
 and Nancy P. Keller
Nancy P. KellerAffiliation: Department of Bacteriology and Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
For correspondence: npkeller@wisc.edu
Bio-protocol author page: a319
Vol 3, Iss 7, 4/5/2013, 3897 views, 0 Q&A, How to cite
DOI: http://dx.doi.org/10.21769/BioProtoc.424

[Abstract] Western blotting allows for the specific detection of proteins and/or modifications of proteins by an antibody of interest. This protocol utilizes a crude nuclei extraction protocol for Aspergillus nidulans to enrich for histones and other nuclear proteins prior to gel electrophoresis. Post translational modifications of histones may then be easily detected. After electrophoresis, the selected antibodies are used to detect and quantify levels of the modifications of interest.

Keywords: Histone H4, Epigenetics, Histone H3

Materials and Reagents

  1. D-glucose
  2. NaNO3
  3. KCl
  4. MgSO4.7H2O
  5. KH2PO4
  6. ZnSO4.7H2O
  7. H3BO3
  8. MnCl2.4H2O
  9. FeSO4.7H2O
  10. CoCl2.5H2O
  11. CuSO4.5H2O
  12. (NH4)6Mo7O24.4H2O
  13. EDTA
  14. Spermine
  15. Spermidine
  16. PMSF
  17. Sorbitol
  18. Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific, catalog number: PI-78437)
  19. NaCl
  20. KCl
  21. Tris base
  22. Glycine
  23. Methanol
  24. Bio-Rad protein assay (Bio-Rad Laboratories, catalog number: 500-0006)
  25. Miracloth (Calbiochem, catalog number: 475855)
  26. Rabbit polyclonal antibody to histone H4 acetyl K5 (1:2,500) (Abcam, catalog number: ab51997)
  27. Rabbit polyclonal antibody to histone H4 acetyl K8 (1:2,500) (Abcam, catalog number: ab15823)
  28. Rabbit polyclonal antibody to human C-terminus histone H4 antibody (1:2,500) (Abcam, catalog number: ab10158)
  29. Mouse monoclonal antibody to TATA Binding Protein (TBP) (1:1,000) (Abcam, catalog number: ab61411)
  30. Mouse monoclonal antibody to pan acetyl H4 (1:1,000) (Active Motif, catalog number: 39925)
  31. Goat anti-mouse alkaline phosphatase conjugated antibody (1:5,000) (Life Technologies, Gibco®, catalog number: 13864-012)
  32. Goat anti-rabbit alkaline phosphatase conjugated antibody (1:5,000) (Pierce Antibodies, catalog number: 31342)
  33. 1-Step NBT/BCIP (Thermo Fisher Scientific, catalog number: 34042)
  34. Glucose Minimal Medium (GMM) (see Recipes)
  35. 2x Laemmli  buffer (see Recipes)
  36. Nuclear Isolation buffer (see Recipes)
  37. Resuspension buffer (see Recipes)
  38. ST buffer (see Recipes)
  39. TBS-T (see Recipes)
  40. Western transfer buffer (see Recipes)
  41. Media Recipes (see Recipes)

Equipment

  1. Mortar and pestle
  2. Bio-Rad Mini-Protean gel electrophoresis system (Bio-Rad Laboratories, catalog number: 170-3940)
  3. Semi-Dry Blotter (Bio-Rad Laboratories, catalog number: 170-3940)
  4. Orbital shaker
  5. 15 ml Falcon tubes
  6. 50 ml Falcon tubes
  7. 30 ml centrifuge tubes
  8. Microfuge tubes

Procedure

  1. Nuclear extract:
    Note: All nuclear isolation steps and solutions should be kept on ice.
    1. Inoculate 250 ml of liquid glucose minimal medium (GMM) to a final concentration of 1 x 106 spores/ml and incubate at 37 °C, 250 rpm for 48 h.
    2. Collect mycelia by vacuum filtration through two layers of miracloth. Remove excess moisture by squeezing in between paper towels.
    3. Place mycelia into a 15 ml Falcon tube and flash freeze in liquid nitrogen. After freezing, grind mycelia to a fine powder with a mortar and pestle under liquid nitrogen.
    4. Transfer ~5 g ground mycelia to 50 ml Falcon tubes.
    5. Add 40 ml of ice cold Nuclear Isolation buffer and vortex to mix.
    6. Centrifuge for 10 min at 1,000 x g, 4 °C. Filter supernatant through a double layer of miracloth into 30 ml centrifuge tubes.
    7. Centrifuge for 10,000 x g for 15 min, 4 °C.
    8. Discard supernatant and resuspend pellet in 10 ml of ice cold Resuspension buffer.
    9. Centrifuge for 10,000 x g for 15 min, 4 °C.
    10. Discard supernatant and resuspend pellet in 1 ml of ice-cold ST buffer.
    11. Transfer suspension into 1.5 ml centrifuge tube and pellet debris by centrifugation at 4,000 x g for 30 sec, room temperature.
    12. Transfer supernatant into a sterile 1.5 ml centrifuge tube. Store at -20 °C if desired.
    13. Quantify protein levels using Bio-Rad Protein Assay or equivalent.
  2. Western blotting:
    1. Load standardized amount of protein per sample (e.g. 50 μg) onto an SDS-PAGE gel with appropriate sample loading buffer (such as Laemmli 2x sample buffer).
      1. I used 10% Tricine-SDS-PAGE, cast according to Schägger (2006), and the Bio-Rad Mini Protean gel electrophoresis system.
    1. Transfer to nitrocellulose membrane by electroblotting using the Bio-Rad Semi-Dry Blotter (can be done at room temperature).
      1. Soak your gel in western transfer buffer for 30 min and soak the nitrocellulose membrane in western transfer buffer for 10 min before blotting.
      2. Soak extra thick blotting paper in western transfer buffer–construct the “sandwich” according to the semi-dry transfer manual. From the bottom (+ pole) working to the top (- pole): Extra thick blotting paper, nitrocellulose membrane, acrylamide gel, extra thick blotting paper.
      3. Assemble apparatus and run at 15 V for 1 h.
    1. Block membranes for 1 h at room temperature on an orbital shaker using 5% nonfat dry milk in TBS-T.
    2. Incubate with primary antibodies for 1 h in TBS-T. 10 ml is sufficient for a small blot. Incubation may also be performed at 4 °C, especially if planning to reuse primary antibody solutions.
    3. Pour off the primary antibody solutions. Primary antibody solutions may be reused up to 5 times, although antibody concentration will decrease with each use. (note: These solutions contain sodium azide as preservative).
    4. Wash 3 x 10 min in TBS-T. Apply secondary antibodies in TBS-T for 1 h at room temperature. 10 ml is sufficient for a small blot.
    5. Pour off secondary antibody solution (no need to retain). Wash blots 3 x 10 min in TBS-T at room temperature on the orbital shaker.
    6. Add One-step NBP/BCIP developing solution and agitate gently. Keep an eye on the signal intensity, it will only be a matter of minutes to develop and development time will be different for each antibody. When reaches desired intensity (or just before), pour off the developing solution and rinse in several changes of distilled water. Incubate in ddH2O for ~20 min.
      (Note: NBP/BCIP developer results precipitation of a colored substance on the membrane, thus, membranes cannot be stripped and reprobed. If intending to reprobe the membrane, alternative secondary antibodies (e.g. HRP or fluorescent conjugated) should be used.)
    7. Blots can be dried on bench to preserve. Signal will fade upon direct exposure to light.

Recipes

  1. 2x Laemmli buffer (1 ml)
    4% SDS   
    400 µl of 10% SDS
    10% 2-mercaptoehtanol
    100 µl
    20% glycerol
    200 µl
    0.004% bromophenol blue
    40 µl of saturated solution (0.1%)
    0.125 M Tris HCl
     125 µl of 1 M Tris HCl (pH 6.8)
    Bring to 1 ml with water.
  2. Nuclear Isolation buffer (1 L) 
    1 M Sorbitol
    182.2 g
    10 mM Tris-HCl (pH 7.5)
    10 ml of 1 M Tris-HCl
    10 mM EDTA
     20 ml of 0.5 M EDTA
    Autoclave, then add the following:
    0.15 mM Spermine
    52.2 mg
    0.5 mM Spermidine
    127 mg
    Right before use, add:
    2.5 mM PMSF
    435 mg
    Note: PMSF has a short half-life in aqueous solutions, 30-100 min.
  3. Resuspension buffer 1 L 500 ml
    1 M Sorbitol
    182.2 g
    91.1 g
    10 mM Tris-HCl pH 7.5
    10 ml of 1M Tris-HCl
    5 ml   
    1 mM EDTA
    2 ml of 0.5 M EDTA
    1 ml
    Autoclave, then add the following:
    0.15 mM Spermine
    52.2 mg   
    26.1 mg
    0.5 mM Spermidine
    127 mg   
    63.5 mg
    Right before use, add (optional):
    2.5 mM PMSF
    435 mg   
    218 mg

  4. ST buffer 100 ml
    1 M Sorbitol
    18.2 g
    10 mM Tris-HCl (pH 7.5)
    1 ml of 1 M Tris-HCl
    Autoclave.
    Add Protease Inhibitor Cocktail right before use at 10 μl per 1 ml.
  5. TBS-T 1 L           
    NaCl
    8 g
    KCl
    0.2 g
    Tris base
    3 g
    Mix in ~ 800 ml dH2O, adjust pH to 7.4 with HCl, then adjust volume to 1 L.
    Autoclave
    After cooling, add 1 ml Tween 20.
  6. Western transfer buffer  1 L  9 L
    Tris base
    3.03 g
    27.3 g
    Glycine   
    14.4 g
    129.6 g
    Methanol
    200 ml
    1.8 L
    Adjust volume to correct volume with dH2O
    Store at 4 °C for up to 1 month
  7. Media Recipes
    Glucose Minimal Medium (GMM)
    20x sodium nitrate salts*
    50 ml/L
    Trace elements (shake before using)
    1 ml/L
    D-glucose
    10 g/L
    Adjust pH to 6.5
    Add ddH2O up to one liter
    Autoclave 15 min, 121 °C
    *20x sodium nitrate salts solution
    NaNO3 
    120 g
    KCl
    10.4 g
    MgSO4.7H2O
    10.4 g
    KH2PO4
    30.4 g
    Add ddH2O up to 1 L
    Autoclave and store at room temperature.
    **Trace elements
    ZnSO4•7H2O
    2.2 g
    H3BO3
    1.1 g
    MnCl2•4H2
    0.5 g
    FeSO4•7H2O
    0.5 g
    CoCl2•5H2O
    0.16 g
    CuSO4•5H2O
    0.16 g
    (NH4)6Mo7O24•4H2O
    0.11g
    Na4EDTA 
    5.0g
    Add the solids in order to 80 ml of H2O, dissolving each completely before adding the next. Heat the solution to boiling, cool to 60 °C. Adjust the pH to 6.5-6.8 with KOH pellets. Cool to room temperature and adjust volume to 100 ml with ddH2O.

References

  1. Palmer, J. M., Perrin, R. M., Dagenais, T. R. and Keller, N. P. (2008). H3K9 methylation regulates growth and development in Aspergillus fumigatus. Eukaryot Cell 7(12): 2052-2060. 
  2. Schagger, H. (2006). Tricine-SDS-PAGE. Nat Protoc 1(1): 16-22.  
  3. Soukup, A. A., Chiang, Y. M., Bok, J. W., Reyes-Dominguez, Y., Oakley, B. R., Wang, C. C., Strauss, J. and Keller, N. P. (2012). Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86(2): 314-330.


How to cite this protocol: Soukup, A. and Keller, N. P. (2013). Western Analysis of Histone Modifications (Aspergillus nidulans). Bio-protocol 3(7): e424. DOI: 10.21769/BioProtoc.424; Full Text



Reproducibility Feedback:

  • Add Photo
  • Add Video

Bio-protocol's major goal is to make reproducing an experiment an easier task. If you have used this protocol, it would be great if you could share your experience by leaving some comments, uploading images or even sharing some videos. Please login to post your feedback.

Q&A and Troubleshooting:

  • Add Photo
  • Add Video

Please login to post your questions/comments. Your questions will be directed to the authors of the protocol. The authors will be requested to answer your questions at their earliest convenience. Once your questions are answered, you will be informed using the email address that you register with bio-protocol.
You are highly recommended to post your data (images or even videos) for the troubleshooting. For uploading videos, you may need a Google account because Bio-protocol uses YouTube to host videos.


Login | Register
Share
Twitter Twitter
LinkedIn LinkedIn
Google+ Google+
Facebook Facebook