欢迎您, 登录 | 注册

首页 | English

X
加载中

Dengue virus infection usually courses as a benign self-limited fever, called dengue fever. However, on occasions it can progress to a life-threatening complication known as severe dengue (SD). A hallmark of SD is a sharp increase in vascular permeability. Secondary infections are considered a risk factor to develop SD, presumably through a mechanism called Antibody-Dependent Enhancement (ADE) of infection in cells with the capacity to bind antigen-antibody complexes, such as macrophages, and to trigger a subsequent aberrant cytokine response. The massive release of cytokine from macrophages has been postulated to cause changes in vascular permeability. The vascular permeability assay presented in this protocol is designed to assess whether any compound or cell-secreted product or soluble factor present in sera from patients may induce plasma leakage in mice. This test was used in the laboratory to determine whether cytokines and soluble factors produced in vitro by macrophages infected with dengue virus or dengue virus in the presence of facilitating antibodies are able to induce plasma leakage in vivo. Macrophages were infected with dengue virus or dengue virus in the presence of facilitating antibodies for 48 h. After this time, the conditioned supernatant containing cytokines and soluble factors released by the macrophages were collected and inoculated intraperitoneally into CD-1 mice. Twenty four hours after the first inoculation, mice were reinoculated with a second dose with Evans blue dye. After another 24 h, mice were euthanized and the amount of Evans blue present in the blood and lung was determined by spectrophotometric analysis. The assay was able to show differences in the capacity of the conditioned media to induce vascular permeability changes in the inoculated animals (Puerta-Guardo et al., 2013).

Thanks for your further question/comment. It has been sent to the author(s) of this protocol. You will receive a notification once your question/comment is addressed again by the author(s).
Meanwhile, it would be great if you could help us to spread the word about Bio-protocol.

X

Assay to Evaluate Vascular Permeability Induction in Mice
小鼠血管通透性诱导的分析评估

微生物学 > 微生物-宿主相互作用 > 体内实验模型 > 哺乳动物
作者: Henry Puerta-Guardo
Henry Puerta-GuardoAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a980
Arturo Raya-Sandino
Arturo Raya-SandinoAffiliation: Department of Physiolology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a981
Lorenza González-Mariscal
Lorenza González-MariscalAffiliation: Department of Physiolology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a982
Victor H. Rosales
Victor H. RosalesAffiliation: General Services Laboratory, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a983
José Ayala-Dávila
José Ayala-DávilaAffiliation: Department of Physiolology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a984
Bibiana Chávez-Mungía
Bibiana Chávez-MungíaAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a985
Daniel Martínez-Fong
Daniel Martínez-FongAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a986
Fernando Medina
Fernando MedinaAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
Bio-protocol author page: a987
Juan E. Ludert
Juan E. LudertAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
For correspondence: jludert@cinvestav.mx
Bio-protocol author page: a988
 and Rosa María del Angel
Rosa María del AngelAffiliation: Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
For correspondence: rmangel@cinvestav.mx
Bio-protocol author page: a989
Vol 3, Iss 22, 11/20/2013, 7050 views, 0 Q&A, How to cite
DOI: http://dx.doi.org/10.21769/BioProtoc.977

[Abstract] Dengue virus infection usually courses as a benign self-limited fever, called dengue fever. However, on occasions it can progress to a life-threatening complication known as severe dengue (SD). A hallmark of SD is a sharp increase in vascular permeability. Secondary infections are considered a risk factor to develop SD, presumably through a mechanism called Antibody-Dependent Enhancement (ADE) of infection in cells with the capacity to bind antigen-antibody complexes, such as macrophages, and to trigger a subsequent aberrant cytokine response. The massive release of cytokine from macrophages has been postulated to cause changes in vascular permeability. The vascular permeability assay presented in this protocol is designed to assess whether any compound or cell-secreted product or soluble factor present in sera from patients may induce plasma leakage in mice. This test was used in the laboratory to determine whether cytokines and soluble factors produced in vitro by macrophages infected with dengue virus or dengue virus in the presence of facilitating antibodies are able to induce plasma leakage in vivo. Macrophages were infected with dengue virus or dengue virus in the presence of facilitating antibodies for 48 h. After this time, the conditioned supernatant containing cytokines and soluble factors released by the macrophages were collected and inoculated intraperitoneally into CD-1 mice. Twenty four hours after the first inoculation, mice were reinoculated with a second dose with Evans blue dye. After another 24 h, mice were euthanized and the amount of Evans blue present in the blood and lung was determined by spectrophotometric analysis. The assay was able to show differences in the capacity of the conditioned media to induce vascular permeability changes in the inoculated animals (Puerta-Guardo et al., 2013).

Keywords: Dengue(登革热), Antibody dependent enhancement(抗体依赖性增强), Cytokines(细胞因子), Tight junctions(紧密连接), Plasma leakage(血浆渗漏)

Materials and Reagents

  1. Mice of six to seven weeks old (CD-1® Mouse, Crl:CD1 (ICR)) (Charles River Laboratories)
  2. Evans Blue Dye (Sigma-Aldrich, catalog number: E2129)
  3. Ketamine (Sigma-Aldich, catalog number: K2753)
  4. Xylazine (Sigma-Aldich, catalog number: X1251)
  5. TNF-α (BD CBA flex set) (BD Biosciences, catalog number: 558273)
  6. 10% Formalin (Sigma-Aldich, catalog number: HT501128)
  7. Formamide (Sigma-Aldich, catalog number: F8775)
  8. NaCl
  9. KCl
  10. Na2HPO4
  11. KH2PO4
  12. HCl
  13. 1x PBS (see Recipes)
  14. 1% (w/v) Evans blue dye solution in PBS (see Recipes)

Equipment

  1. EDTA tubes
  2. Lyophilizer
  3. Centrifuge (Beckman Coulter, model: Allegra X-12R) (Rotor SX4750)
  4. Spectrophotometry (BioTek Instruments, model: ELx808 Absorbance Microplate Reader)

Procedure

  1. Mice of six to seven weeks old and 18-20 g in weight in a minimal amount of 4 mice per group, were injected intraperitoneally with 2 doses (100 μl each) 24 h apart, of media or supernatants to be evaluated.
  2. Since TNF-α has been described as a plasma leakage inductor, this cytokine can be used for the injection as positive control (4 ng/ml).
  3. Together with the second dose of conditioned supernatant, mice were injected intraperitoneally with 4 ml/kg of weight a 1% Evans blue dye solution (w/v in PBS) allowing circulation for 24 h as was described previously (Manaenko et al., 2011).
  4. Before samples were collected, mice were injected with anesthetics: ketamine (70 mg/kg) and xylazine (6 mg/kg), afterward blood samples were collected by cardiac puncture.
  5. Blood was immediately placed in EDTA tubes.
  6. Samples were diluted 1:2 v/v in PBS and plasma was separated by centrifugation at 3,000 rpm for 8 min.
  7. The amount of Evans blue dye present in plasma was measured by spectrophotometry at 630 nm. Quantification was performed by comparison with a standard curve.
  8. The standard curve was constructed using dilution of Evans blue dye in 1x PBS in a range from 3 to 400 ng/ml (R = 0.999).
  9. To evaluate the pulmonary capillary leakage, the mice were perfused transcardially with 50 ml of PBS followed by 20 ml of 10% Formalin for tissue fixation. The lung tissues were removed and preserved in formalin solution at 4 °C until analysis.
  10. The right lung was vacuum-dried, weight and frozen instantly in liquid nitrogen.
  11. Evans blue dye was extracted from the lung by incubation at 65 °C with formamide (2 ml/g tissue) overnight (Peng et al., 2004).
  12. The lung tissue was pelleted by centrifugation (12,000 x g for 30 min), and the concentration of Evans blue dye extracted in the supernatant was determined spectrophotometrically at 630 nm against a standard curve. Concentration of Evans blue dye was determined in ng/ml of lung tissue. However, this study was designed to compare the permeability induction capacity of different cell supernatants, thus, results were expressed as fold increases in relation to the mock or control condition. Nevertheless, results can also be expressed directly in ng/ml of tissue. Any statistically significant increase between the control and the experimental conditions is considered as leakage induction (Figure 1).

Note: This type of studies has to be conducted in accordance with official guidelines for the Standard Production, Care and Use of Laboratory Animals of each country.



Figure 1. Effect of conditioned supernatants on vascular permeability in vivo. Six to eight weeks old mice (CD1 strain) were injected twice intraperitoneally, 24 h apart, with conditioned supernatans. A. Solution of 1% Evans Blue dye (EVD) was injected together with the second dose. Twenty four hours later, EVD was extracted from plasma and lungs and quantified against standard curves. Values are expressed as ng/ml per plasma (panel A) or as fold increases per lung in relation to the control (panel B). Panels C and D, standard curves for EVD extracted from plasma and lungs, respectively. Four mice were included per condition. Statistical significance was *p < 0.05 and **p < 0.001. Mock: supernatant collected from mock infected cells. DENV: Supernatant collected from cells infected directly with dengue virus. DENV + Enh: Supernatant collected from cells infected in the presence of enhancing antibodies. DENV + Mut: Supernatant collected from cells infected in the presence of mutated antibodies (incapable of inducing enhancing). DENV+Neu: Supernatant collected from cells infected in the presence of neutralizing antibodies. TNF-α: TNF-α used as positive control.

Recipes

  1. 1x PBS
    8 g (137 mM) NaCl
    0.2 g (2.7 mM) KCl
    1.44 g (10 mM) Na2HPO4
    0.24 g (2 mM) KH2PO4
    Add 800 ml H2O
    Adjust pH to 7.4 with HCl
    Add water up to 1 L
  2. 1% (w/v) Evans blue dye solution in PBS
    Add 1 g of Evans blue dye to 100 ml of 1x PBS

Acknowledgments

This protocol was adapted from Puerta-Guardo et al. (2013). The study was partially supported by grants 103783 and 127447 from The Mexican Council for Science and Technology (CONACYT) to JEL and RMDA, respectively. HPG and ARS are recipients of CONACYT scholarships. Authors declare no conflict of interest.

References

  1. Manaenko, A., Chen, H., Zhang, J. H. and Tang, J. (2011). Comparison of different preclinical models of intracerebral hemorrhage. Acta Neurochir Suppl 111: 9-14.
  2. Peng, X., Hassoun, P. M., Sammani, S., McVerry, B. J., Burne, M. J., Rabb, H., Pearse, D., Tuder, R. M. and Garcia, J. G. (2004). Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 169(11): 1245-1251.
  3. Puerta-Guardo, H., Raya-Sandino, A., Gonzalez-Mariscal, L., Rosales, V. H., Ayala-Davila, J., Chavez-Mungia, B., Martinez-Fong, D., Medina, F., Ludert, J. E. and del Angel, R. M. (2013). The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability. J Virol 87(13): 7486-7501.


How to cite this protocol: Puerta-Guardo, H., Raya-Sandino, A., González-Mariscal, L., Rosales, V. H., Ayala-Dávila, J., Chávez-Mungía, B., Martínez-Fong, D., Medina, F., Ludert, J. E. and Angel, R. M. (2013). Assay to Evaluate Vascular Permeability Induction in Mice. Bio-protocol 3(22): e977. DOI: 10.21769/BioProtoc.977; Full Text



可重复性反馈:

  • 添加图片
  • 添加视频

我们的目标是让重复别人的实验变得更轻松,如果您已经使用过本实验方案,欢迎您做出评价。我们鼓励上传实验图片或视频与小伙伴们(同行)分享您的实验心得和经验。(评论前请登录)

问题&解答:

  • 添加图片
  • 添加视频

(提问前,请先登陆)bio-protocol作为媒介平台,会将您的问题转发给作者,并将作者的回复发送至您的邮箱(在bio-protocol注册时所用的邮箱)。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片或者视频的形式来说明遇到的问题。由于本平台用Youtube储存、播放视频,作者需要google 账户来上传视频。


登陆 | 注册
分享
Twitter Twitter
LinkedIn LinkedIn
Google+ Google+
Facebook Facebook