搜索

Monitoring Xylem Hydraulic Pressure in Woody Plants
木本植物中木质部液压的监测   

评审
匿名评审
下载 PDF 引用 收藏 提问与回复 分享您的反馈 Cited by

本文章节

Abstract

Xylem sap circulates under either positive or negative hydraulic pressure in plants. Negative hydraulic pressure (i.e., tension) is the most common situation when transpiration is high, and several devices have been developed to quantify it accurately (e.g., Scholander pressure chamber, psychrometers). However, a proper measurement of positive xylem sap pressures may be critical when pressure is generated by the root system, allowing vessels to be refilled. Here, we describe two different methods to monitor positive xylem bulk pressure: the pressure gauge which can only be set onto a rootstock or a side branch and the point pressure sensor, which can allow measurements from a functioning plant without detopping or cutting.

Keywords: Pressure(压力), Tension(张力), Water status(水分状况), Xylem water potential(木质部水势)

Background

Although plants can recover from critical levels of xylem embolism, < 50% loss of hydraulic conductivity in conifers (Brodribb and Cochard, 2009) and < 88% in angiosperms (Urli et al., 2013), the exact mechanism is still under debate. The ascent of sap is driven by the evaporative demand from the atmosphere, which generates a negative pressure (i.e., tension) in the water column and hydrogen bonds between molecules (i.e., cohesion) pull the sap through the plant via the well accepted cohesion-tension theory (Dixon, 1896; Angeles et al., 2004). However, positive xylem sap pressure can be recorded under particular conditions, for example water-saturated soil combined with very low transpiration. This mechanism has been shown to refill embolized vessels in springtime (Sperry et al., 1994) and in species that experienced freeze-thaw induced embolism (Charrier et al., 2013 and 2014). Refilling of embolized vessels has been hypothesized to occur under both positive and negative xylem sap pressures in Laurus sp or Vitis sp, for example (Salleo et al., 1996). However, the ‘refilling under tension’ mechanism is inconsistent with the cohesion-tension theory (Zwieniecki and Holbrook, 2000). Moreover, recent works suggest that refilling occurs only under positive pressure in Vitis (Charrier et al., 2016). The dynamic changes in xylem sap pressure therefore need to be explored at both the seasonal and diurnal scale while maintaining as much as possible the integrity of the hydraulic architecture of the plant.

Although the use of stem psychrometers has been extensively described since the 80’s (e.g., Dixon and Tyree, 1984; Tyree and Dixon, 1986), the measurement of positive xylem sap pressure is relatively rare. The protocol described here allows the quantification of the spatio-temporal pattern of bulk xylem sap water potential under positive pressures, and even moderate tensions (maximum of 0.05 MPa) along the water column using non-invasive sensors (i.e., point pressure sensors).

Materials and Reagents

  1. Parafilm M (Bemis, catalog number: PM996 )
  2. Stainless-steel hypodermic needle 21 G 1 ½” (Terumo Medical, catalog number: 8AN2138R1 )
  3. Union–1/16” PEEK (Interchim, catalog number: 869290 )
  4. Lock ring (Ark-Plas Products, catalog number: LEX66-PP0 )
  5. Threaded male Luer connector 10-32 UNF (Ark-Plas Products, catalog number: LGX74-PP0 )
  6. Reinforced PVC flexible tubes (RS Components, catalog number: 440-874 )
  7. Zip ties e.g., RS Pro Black Nylon Non-Releasable Cable Tie, 300 x 4.8 mm (RS Components, catalog number: 233-487 )
  8. 4-way Luer Lock Stopcock, Male-Male-Female (Cole-Parmer, catalog number: EW-30600-04 )
  9. Stainless steel high quality single edge blades (e.g., Mure & Peyrot, catalog number: 144.3 )
  10. Nylon Hose clips (RS Components, catalog number: 291-587 )
  11. Cutting disk (RS Components, catalog number: 448-7439 )
  12. HSS Drill bit, 0.8 mm diameter (e.g., RS Components, catalog number: 457-651 )

Note: Most parts are available from the laboratory equipment suppliers.

Equipment

  1. High resolution datalogger (e.g., Campbell Scientific, model: CR1000 )
  2. Pressure transducer 30Psi (Honeywell International, catalog number: 26PCDFA6D )
  3. Stabilized power supply 12V DC (e.g., Traco Power, catalog number: TML 20212C )
  4. Hand-held driller

Procedure

Directly attaching a pressure sensor at the distal end of a cut stem (i.e., pressure gauge) allows quantitative measurement of the pressure however at the cost of removing the upper part of the plant. Another approach, less interfering but still invasive (i.e., point pressure sensor), is to connect the pressure sensor to the xylem via a stainless steel hypodermic needle (Clearwater et al., 2007; Thitithanakul, 2012, see Figure 1). The latter allows plant functions (e.g., transpiration) to continue and pressure to be recorded at different heights along the water column. Xylem sap pressure is measured by a pressure transducer connected to a datalogger that records the output signal (positive or negative). The connection between the sensor and the xylem has to be perfectly sealed using Parafilm in order to accurately estimate the pressure.


Figure 1. Distal part of a grapevine plant (Vitis vinifera cv. Grenache) showing examples of the three distinct instruments. From bottom to top, stem psychrometer PSY-1, point pressure sensor and pressure gauge.

  1. Preparation of the sensor (Figure 2)
    Wrap the threaded end (10-32 UNF) of the pressure transducer (#1 Figure 2) and the male Luer connector (#3 Figure 2) with Parafilm and screw up at both ends of the union 1/16” piece (#2 Figure 2). Place the Luer lock (#4 Figure 2) onto the male Luer connector. Fill the sensor with deionized degassed water to remove all air bubbles.


    Figure 2. Different parts and assembly of the sensors. Pressure transducer (1), union 1/16” piece (2), male Luer connector (3) and Luer lock (4), point pressure sensor (5) and pressure gauge (6).

    1. Pressure gauge (#6 Figure 2)
      Connect a 3 cm-long piece of adapter tubing to the 4-way Stopcock. Wrap the region of interest of the distal end of the stem with Parafilm, cut the stem 2-3 times under water with a sharp blade. Remove bark and cambium over 1 cm using the blade and immediately insert the cut end into the adapter tubing, tighten with a collar. Fill the whole system up with deionized and degassed water to remove all air bubbles using a syringe.
    2. Point pressure sensor (#5 Figures 2 and 3)
      1. Using a small disk, gently make a notch 2.0 cm from the base of the stainless steel hypodermic needle (21 G 1 ½”; #1-2 Figure 4), and cut the needles at 2.1 cm. Remove all barbs and make sure that the needle is not plugged using a needle of smaller diameter . Drill a hole of the exact diameter of the needle 1 cm away from the lock of the zip tie. Insert the needle into the hole and wrap the basal 2.0 cm with Parafilm (#3 Figure 4).
      2. Drill a hole of the exact diameter of the needle in the stem using a drill bit (0.8 mm diameter for 21 G 1 ½” needles). Pierce to the xylem and then wash it with deionized water. Gently insert the stainless steel hypodermic needle, previously filled with water, into the hole. The notch of the needle must locate within the xylem (Figure 3). Tightly fix the needle with the zip tie.


        Figure 3. Point pressure sensor inserted into a grapevine plant. The frame illustrates the cross-section of the stem and shows the insertion of the needle into the stem xylem.


        Figure 5. Connection of the point pressure sensor. Once the inserted needle is filled with deionized and degassed water (1), the sensor is screwed onto the needle (2, 3).

  2. Connection of the sensor (Figure 5)
    Fill both pressure sensor and inserted needle with deionized degassed water (#1 Figure 5), and screw them together (#2 Figure 5). Connect the pressure transducer to the datalogger, with stabilized 10 or 12 V (D.C) input voltage.

Data analysis

  1. Each pressure transducer has a slight offset from atmospheric pressure. It is therefore recommended to measure the output signal (the offset U0) for a short period of time (e.g., > 5-10 measurements by the datalogger) before any measurement (calibration or connecting the pressure transducer to the xylem of a plant).
  2. Calibration can be performed using a pressure gauge to measure the output signal along the normal operating range of the sensor (e.g., 30 Psi [ca. 0.2 MPa] for 26PCFFA6D sensors; Figure 6). The output tension (Uout) depends on the input tension (Uin) and the calibration coefficient of the sensor. It therefore should be normalized if Uin is not stable along the experiment (e.g., battery supply over a long period).


    Figure 6. Calibration of the sensor. Pressure depending on the recorded tension Uout, with constant input tension (Uin = 12V).

  3. The pressure is therefore equal to:

    P = α·k·(Uout - U0)

    where, P is the pressure in kPa, Uout is the output signal in mV, U0 is the offset in mV, k the calibration coefficient of the sensor in kPa mV-1 and α, the ratio between Ucal (the input tension during calibration) and Uin.
  4. Correcting the effect of temperature on the output signal.
    Uout is affected by the temperature resulting in 3.5 kPa variation in apparent pressure over the 10-20 °C range in both a closed sensor (orange line Figure 7) and a sensor connected to an excised plant i.e., detached from the root system (green line Figure 7).
    The change in apparent pressure depending on the temperature is used to correct the apparent pressure (Figure 8): sensor connected to the excised plant (U0 = 0.530·θ - 9.60) or closed sensor (U0 = 0.482·θ - 11.12).
    However, the discrepancy between apparent and corrected pressure is relatively small compared to the pressure generated by the plant (50 kPa or more in intact plant, vs. ca. 3.5 kPa in control sensors, in this example).


    Figure 7. Variation in temperature (+ 20/10 °C; dotted black line) and the effect on the recorded signal from a pressure sensor alone (orange line) or inserted in a cut grapevine plant (without root system, green line). The change in the apparent pressure (ca. 0.35 kPa °C-1) has to be taken into account in data analysis. The solid black line represents the apparent pressure recorded in an intact grapevine and red and brown lines the corrected pressure according to the correction using sensor alone or inserted in a cut plant, respectively.


    Figure 8. Apparent pressure depending on air temperature in a closed pressure sensor (orange dots) or inserted in a cut grapevine plant (without root system, green dots)

Acknowledgments

This study has been carried out with financial support from the Cluster of Excellence COTE (ANR-10-LABX-45, within Water Stress project), and AgreenSkills Fellowship program, which has received funding from the EU’s Seventh Framework Program under grant agreement FP7 No. 26719 (AgreenSkills contract 688).

References

  1. Angeles, G., Bond, B., Boyer, J. S., Brodribb, T., Brooks, J. R., Burns, M. J., Cavender-Bares, J., Clearwater, M., Cochard, H., Comstock, J., Davis, S. D., Domec, J., Donovan, L., Ewers, F., Gartner, B., Hacke, U., Hinckley, T., Holbrook, N. M., Jones, H. J., Kavanagh, K., Law, B., López-Portillo, J., Lovisolo, C., Martin, T., Martínez-Vilalta, J., Mayr, S., Meinzer, F. C., Melcher, P., Mencuccini, M., Mulkey, S., Nardini, A., Neufeld, H. S., Passioura, J., Pockman, W. T., Pratt, R. B., Rambal, S., Richter, H., Sack, L., Salleo, S., Schubert, A., Schulte, P., Sparks, J. P., Sperry, J., Teskey, R. and Tyree, M. (2004). The cohesion-tension theory. New Phytologist 163(3): 451-452.
  2. Brodribb, T. J. and Cochard, H. (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149(1): 575-584.
  3. Charrier, G., Charra-Vaskou, K., Kasuga, J., Cochard, H., Mayr, S. and Ameglio, T. (2014). Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiol 164(2): 992-998.
  4. Charrier, G., Cochard, H. and Ameglio, T. (2013). Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiol 33(9): 891-902.
  5. Charrier, G., Torres-Ruiz, J. M., Badel, E., Burlett, R., Choat, B., Cochard, H., Delmas, C. E., Domec, J. C., Jansen, S., King, A., Lenoir, N., Martin-StPaul, N., Gambetta, G. A. and Delzon, S. (2016). Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol 172(3): 1657-1668.
  6. Clearwater, M. J., Blattmann, P., Luo, Z. and Lowe, R. G. (2007). Control of scion vigour by kiwifruit rootstocks is correlated with spring root pressure phenology. J Exp Bot 58(7): 1741-1751.
  7. Dixon, H. H. (1896). On the osmotic pressure in the cells of leaves. Proceedings of the Royal Irish Academy (1889-1901) 4: 61-73.
  8. Dixon, M. A. and Tyree, M. T. (1984). A new stem hygrometer, corrected for temperature gradients and calibrated against the pressure bomb. Plant Cell Environ 7(9): 693-697.
  9. Salleo, S., Gullo M. A. L., Paoli, D. and Zippo, M. (1996). Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytologist 132: 47-56.
  10. Sperry, J. S., Nichols, K. L., Sullivan, J. E. and Eastlack, S. E. (1994). Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75(6): 1736-1752.
  11. Thitithanakul, S. (2012). Effect of nitrogen supply before bud break on early development of the young hybrid poplar. PhD thesis. Universite Blaise Pascal, Clermont-Ferrand II.
  12. Tyree, M. T. and Dixon, M. A. (1986). Water stress induced cavitation and embolism in some woody plants. Physiol Plantarum 66(3): 397-405.
  13. Urli, M., Porte, A. J., Cochard, H., Guengant, Y., Burlett, R. and Delzon, S. (2013). Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33(7): 672-683.
  14. Zwieniecki, M. A. and Holbrook, N. M. (2000). Bordered pit structure and vessel wall surface properties. Implications for embolism repair. Plant Physiol 123(3): 1015-1020.

简介

木质部汁液在正或负液压下在植物中循环。 负压液压(即,张力)是蒸腾量较高时最常见的情况,并且已经开发了几种装置来准确地对其进行定量(例如,Scholander压力室,温度计)。 然而,当根系产生压力时,正确的木质部汁液压力的正确测量可能是至关重要的,从而允许容器被再填充。 在这里,我们描述了两种不同的方法来监测阳性木质部体积压力:只能设置在砧木或侧枝上的压力计和点压力传感器,这可以允许从功能性植物进行测量而无需去顶部或切割。
【背景】虽然植物可以从关键水平的木质部栓塞中恢复,但针叶树(Brodribb和Cochard,2009)的水力传导损失<50%,被子植物(Urli等人,2013)<88%),确切的机制仍在争论之中。液体的上升由大气的蒸发需求驱动,这在水柱中产生负压(即,张力)和分子之间的氢键(即,凝聚力)通过良好接受的内聚力理论(Dixon,1896; Angeles等人,2004)将汁液从植物中提取出来。然而,可以在特定条件下记录正的木质部汁液压力,例如水饱和土壤结合非常低的蒸腾。已经显示这种机制在春季(Sperry等人,1994)和经历冻融诱导栓塞的物种(Charrier等人,2013年)中重新填充栓塞血管和2014)。栓塞血管的重新填充已被假设发生在金黄色葡萄球菌或葡萄球菌中的阳性和阴性木质部汁液压力下,例如(Salleo等人,,1996)。然而,“紧张紧张”机制与凝聚力紧张理论不一致(Zwieniecki和Holbrook,2000)。此外,最近的作品表明,再灌注仅发生在Vitis 的正压力下(Charrier等人,2016年)。因此,需要在季节和昼间规模下探索木质部液压压力的动态变化,同时尽可能保持工厂的液压结构的完整性。

尽管自80年代以来(例如,Dixon和Tyree,1984; Tyree和Dixon,1986)已经广泛地描述了使用干燥温度计,但是正的木质部汁液压力的测量是相对罕见的。这里描述的方案允许使用非侵入式传感器定量在正压力下的体积木质部汁液潜力的时空模式,以及甚至沿水柱的中等张力(最大为0.05MPa)(即,,点压力传感器)。

关键字:压力, 张力, 水分状况, 木质部水势

材料和试剂

  1. Parafilm M(Bemis,目录号:PM996)
  2. 不锈钢皮下注射针21 G 1½“(Terumo Medical,目录号:8AN2138R1)
  3. Union-1/16“PEEK(Interchim,目录号:869290)
  4. 锁环(Ark-Plas Products,目录号:LEX66-PP0)
  5. 螺纹公Luer连接器10-32 UNF(Ark-Plas Products,目录号:LGX74-PP0)
  6. 增强PVC柔性管(RS组件,目录号:440-874)
  7. RS Pro黑尼龙不可剥离电缆扎带,300 x 4.8 mm(RS组件,目录号:233-487)
  8. 4路Luer Lock Stopcock,Male-Male-Female(Cole-Parmer,目录号:EW-30600-04)
  9. 不锈钢高质量单刃刀片(例如,Mure&amp; Peyrot,目录号:144.3)
  10. 尼龙软管夹(RS Components,目录号:291-587)
  11. 切割盘(RS Components,目录号:448-7439)
  12. HSS钻头,直径为0.8mm(例如,RS组件,目录号:457-651)

注意:大多数零件可从实验室设备供应商处获得。

设备

  1. 高分辨率数据记录仪(例如,,Campbell Scientific,型号:CR1000)
  2. 压力传感器30Psi(Honeywell International,目录号:26PCDFA6D)
  3. 稳定电源12V DC(例如,,Traco Power,目录号:TML 20212C)
  4. 手持式司机

程序

在切割杆的远端(即,压力计)处直接连接压力传感器允许定量测量压力,但是以去除工厂的上部为代价。通过不锈钢皮下注射针将清除压力传感器连接到木质部的另一种方法,较少的干扰但仍然是侵入性的(即,点压力传感器) ,2007; Thitithanakul,2012,见图1)。后者允许植物功能(例如,/或蒸腾)继续并且沿着水柱在不同高度记录压力。木质部汁液压力通过连接到记录输出信号(正或负)的数据记录器的压力传感器来测量。传感器和木质部之间的连接必须使用Parafilm完美密封,以准确估计压力。


图1.葡萄树植物的远端部分(葡萄种植葡萄种植专家,格拉纳克),显示三种不同仪器的实例。从底部到顶部,茎干度测定仪PSY-1,点压力传感器和压力表。

  1. 传感器的准备(图2)
    将压力传感器(#1图2)的螺纹端(10-32 UNF)和带有Parafilm的公Luer连接器(#3图2)包起,并拧入联合1/16“(#2)的两端图2)。将Luer锁(#4图2)放在公Luer连接器上。用去离子脱气水填充传感器以除去所有气泡。


    图2.传感器的不同部件和组装。压力传感器(1),联合1/16“(2),公鲁尔连接器(3)和鲁尔锁(4),点压力传感器(5)和压力表(6)。

    1. 压力表(#6图2)
      将3厘米长的接头管连接到4路旋塞阀。用石蜡膜包裹茎的远端感兴趣的区域,用锋利的刀片在水下切割茎2-3次。使用刀片去除超过1厘米的树皮和形成层,并立即将切割端插入适配器管中,并用套环拧紧。使用去离子水和脱气水填充整个系统以使用注射器去除所有气泡。
    2. 点压力传感器(#5图2和3)
      1. 使用小盘,轻轻地从不锈钢皮下注射针(21 G 1½“;#1-2图4)的底部2.0厘米处切开,并将针切割成2.1厘米。取下所有倒钩,并确保针头没有使用较小直径的针塞住。钻一个距离拉链领带1厘米远的针的确切直径的孔。将针插入孔中并用Parafilm包裹基底2.0厘米(#3图4)。
      2. 使用钻头(针对21 G 1 1/2“针直径为0.8 mm)钻一根针头直径的孔。穿过木质部,然后用去离子水清洗。将先前装有水的不锈钢皮下注射针插入孔中。针的缺口必须位于木质部内(图3)。用扎带紧固针。

        “”src
        图3.插入葡萄园的点压力传感器。 框架说明了茎的横截面,并显示了将针插入茎木质部。


        图5.点压力传感器的连接。 一旦插入的针头被去离子和脱气的水(1)填充,传感器就被拧到针(2,3)上。

  2. 传感器的连接(图5)
    用去离子脱气水填充压力传感器和插入针头(#1图5),并将它们拧在一起(#2图5)。将压力传感器连接到数据采集器,具有稳定的10或12 V(D.C)输入电压。

数据分析

  1. 每个压力传感器与大气压力有轻微偏差。因此,建议在任何时间之前测量短时间内的输出信号(偏移U 0 )(例如,,以及数据记录器的5-10次测量)测量(校准或连接压力传感器到植物的木质部)。
  2. 可以使用压力计进行校准,以测量26PCFFA6D传感器沿着传感器的正常工作范围(例如,30 Psi [ ca。 0.2 MPa])的输出信号;图6)。输出张力(U )取决于输入张力(中的U )和传感器的校准系数。因此,如果中的U 在实验中不稳定(例如,长期的电池供应),则应该被归一化。


    图6.传感器的校准。 压力取决于记录张力U ,输入张力恒定(U = 12V)。

  3. 因此压力等于:



    其中,P是压力(kPa),U输出是以mV为单位的输出信号,U 0 是以mV为单位的偏移量,k为传感器的校准系数,单位为kPa mV -1 和α,U cal之间的比例(校准期间的输入张力)和中的U 。
  4. 校正温度对输出信号的影响 U 受到温度的影响,导致在闭合传感器(橙线图7)和连接到切除植物的传感器的10-20℃范围内的表观压力变化3.5kPa < ie ,从根系统分离(绿色线图7)。
    根据温度变化的表观压力的变化用于校正表观压力(图8):连接到被切除的设备的传感器( U 0 = 0.530•θ - 9.60)或闭合传感器( = 0.482•θ< - 11.12) 然而,与本厂生产的压力相比,控制传感器中的压力(在整个设备中为50 kPa以上,而在控制传感器中为3.5 kPa),表观和校正压力之间的差异较小, 。

    图7.温度变化(+ 20/10°C;虚线黑线)和单独压力传感器(橙线)或插入切葡萄植物(无根系,绿色)的记录信号的影响线)。在数据分析中必须考虑表观压力的变化( 0.35kPa°C -1 )。实线黑线表示根据使用传感器单独进行校正或插入切割设备的校正压力记录在完整葡萄树和红色和棕色线中的表观压力。


    图8.视觉压力取决于封闭压力传感器(橙色点)中的空气温度或插入切割的葡萄植物(无根系,绿色点)

致谢

这项研究是在来自优秀研究组(ANR-10-LABX-45,水利重点项目)以及AgreenSkills奖学金计划的财政支持下进行的,该计划已获得欧盟第七框架计划资助,授予协议FP7 No 26719(AgreenSkills合约688)。

参考

  1. Angeles,G.,Bond,B.,Boyer,JS,Brodribb,T.,Brooks,JR,Burns,MJ,Cavender-Bares,J.,Clearwater,M.,Cochard,H.,Comstock,J.,Davis ,SD,Domec,J.,Donovan,L.,Ewers,F.,Gartner,B.,Hacke,U.,Hinckley,T.,Holbrook,NM,Jones,HJ,Kavanagh,K.,Law, ,López-Portillo,J.,Lovisolo,C.,Martin,T.,Martínez-Vilalta,J.,Mayr,S.,Meinzer,FC,Melcher,P.,Mencuccini,M.,Mulkey,S.,Nardini ,A.,Neufeld,HS,Passioura,J.,Pockman,WT,Pratt,RB,Rambal,S.,Richter,H.,Sack,L.,Salleo,S.,Schubert,A.,Schulte, ,Sparks,JP,Sperry,J.,Teskey,R。和Tyree,M。(2004)。新的植物学家 163 (3):451-452。
  2. Brodribb,T.J。和Cochard,H。(2009)。 水压失效定义了水胁迫针叶树的恢复和死亡点。 >植物生理学 149(1):575-584。
  3. Charrier,G.,Charra-Vaskou,K.,Kasuga,J.,Cochard,H.,Mayr,S.and Ameglio,T。(2014)。 冻融应力:十个木本被子植物中温度对水力传导率和超声波活动的影响。 a>植物生理学 164(2):992-998。
  4. Charrier,G.,Cochard,H。和Ameglio,T。(2013)。 评估抗冻能力对树木潜在的高度限制的影响。树生理 33(9):891-902。
  5. Charrier,G.,Torres-Ruiz,JM,Badel,E.,Burlett,R.,Choat,B.,Cochard,H.,Delmas,CE,Domec,JC,Jansen,S.,King,A.,Lenoir ,N.,Martin-StPaul,N.,Gambetta,GA和Delzon,S。(2016)。 在紧张情况下水力脆弱性分割和缺少木质部重新填充的证据。工厂Physiol 172(3):1657-1668。
  6. Clearwater,M.J.,Blattmann,P.,Luo,Z。和Lowe,R.G。(2007)。 通过猕猴桃砧木控制接穗活力与春季根压力物候相关。 > J Exp Bot 58(7):1741-1751。
  7. Dixon,H.H。(1896)。 叶片细胞的渗透压。 皇家爱尔兰学院(1889-1901年)4:61-73。
  8. Dixon,M.A。和Tyree,M.T。(1984)。 新的干湿度计,根据温度梯度进行校正,并针对压力弹簧进行校准。 / a>植物细胞环境7(9):693-697。
  9. Salleo,S.,Gullo M.A.L.,Paoli,D。和Zippo,M。(1996)。 从幼虫中的气穴引起的栓塞的木质部恢复> Laurus nobilis :一种可能的机制。 新的植物学家 132:47-56。
  10. Sperry,J.S.,Nichols,K.L.,Sullivan,J.E。和Eastlack,S.E。(1994)。 犹他州北部的多孔,弥漫多孔和针叶树的木质部栓塞和内部阿拉斯加 生态学 75(6):1736-1752。
  11. Thitithanakul,S。(2012)。 芽突前氮素供应对年轻混合杨树早期发育的影响。 / a>博士论文。克莱蒙费朗大学Blaise Pascal II。
  12. Tyree,M.T。和Dixon,M.A。(1986)。 某些木本植物中水分胁迫导致气蚀和栓塞。 > Physiol Plantarum 66(3):397-405。
  13. Urli,M.,Porte,A.J.,Cochard,H.,Guantant,Y.,Burlett,R.and Delzon,S。(2013)。 被子植物树中灾难性水力失效的木质部栓塞阈值。生理学< 33(7):672-683。
  14. Zwieniecki,M.A。和Holbrook,N.M。(2000)。 边界坑结构和血管壁表面性质。栓塞修复的意义。 植物生理学 123(3):1015-1020。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2017 The Authors; exclusive licensee Bio-protocol LLC.
引用: Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
  1. Charrier, G., Burlett, R., Gambetta, G. A., Delzon, S., Domec, J. C. and Beaujard, F. (2017). Monitoring Xylem Hydraulic Pressure in Woody Plants. Bio-protocol 7(20): e2580. DOI: 10.21769/BioProtoc.2580.
  2. Charrier, G., Torres-Ruiz, J. M., Badel, E., Burlett, R., Choat, B., Cochard, H., Delmas, C. E., Domec, J. C., Jansen, S., King, A., Lenoir, N., Martin-StPaul, N., Gambetta, G. A. and Delzon, S. (2016). Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol 172(3): 1657-1668.
提问与回复

(提问前,请先登录)bio-protocol作为媒介平台,会将您的问题转发给作者,并将作者的回复发送至您的邮箱(在bio-protocol注册时所用的邮箱)。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片或者视频的形式来说明遇到的问题。由于本平台用Youtube储存、播放视频,作者需要google 账户来上传视频。

当遇到任务问题时,强烈推荐您提交相关数据(如截屏或视频)。由于Bio-protocol使用Youtube存储、播放视频,如需上传视频,您可能需要一个谷歌账号。