Welcome guest, Sign in

Home


Shoji Mano

Education

Ph.D. in Science, Department of Molecular Biomechanics, School of Life Science, The Graduate University for Advanced Studies, 1997

Current position

Assistant professor in Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
Assistant professor in Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan

Publications (since 2010)

  1. Ueda, H., Yokota, E., Kuwata, K., Kutsuna, N., Mano, S., Shimada, T., Tamura, K., Stefano, G., Fukao, Y., Brandizzi, F., Shimmen, T., Nishimura, M. and Hara-Nishimura, I. (2016). Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis. Plant Physiol 170(2): 867-880.
  2. Kimori, Y., Hikino, K., Nishimura, M. and Mano, S. (2016). Quantifying morphological features of actin cytoskeletal filaments in plant cells based on mathematical morphology. J Theor Biol 389: 123-131.
  3. Kanai, M., Mano, S., Kondo, M., Hayashi, M. and Nishimura, M. (2016). Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Plant Biotechnol J 14(5): 1241-1250.
  4. Goto-Yamada, S., Mano, S., Yamada, K., Oikawa, K., Hosokawa, Y., Hara-Nishimura, I. and Nishimura, M. (2015). Dynamics of the Light-Dependent Transition of Plant Peroxisomes. Plant Cell Physiol 56(7): 1264-1271.
  5. Oikawa, K., Matsunaga, S., Mano, S., Kondo, M., Yamada, K., Hayashi, M., Kagawa, T., Kadota, A., Sakamoto, W., Higashi, S., Watanabe, M., Mitsui, T., Shigemasa, A., Iino, T., Hosokawa, Y., and Nishimura, M. (2015). Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nature Plants 1(4), 15035.
  6. Motomura, K., Le, Q. T., Hamada, T., Kutsuna, N., Mano, S., Nishimura, M. and Watanabe, Y. (2015). Diffuse decapping enzyme DCP2 accumulates in DCP1 foci under heat stress in Arabidopsis thaliana. Plant Cell Physiol 56(1): 107-115.
  7. Shibata, M., Oikawa, K., Mano, S. and Nishimura, M. (2014). Measurement of the Number of Peroxisomes. Bio-protocol 4(21): e1284.
  8. Goto-Yamada, S., Mano, S., Oikawa, K., Shibata, M. and Nishimura, M. (2014). Interaction between chaperone and protease functions of LON2, and autophagy during the functional transition of peroxisomes. Plant Signal Behav 9(5): e28838.
  9. Shibata, M., Oikawa, K., Yoshimoto, K., Goto-Yamada, S., Mano, S., Yamada, K., Kondo, M., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2014). Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy 10(5): 936-937.
  10. Goto-Yamada, S., Mano, S., Nakamori, C., Kondo, M., Yamawaki, R., Kato, A. and Nishimura, M. (2014). Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant Cell Physiol 55(3): 482-496.
  11. Mano, S., Nakamura, T., Kondo, M., Miwa, T., Nishikawa, S., Mimura, T., Nagatani, A. and Nishimura, M. (2014). The Plant Organelles Database 3 (PODB3) update 2014: integrating electron micrographs and new options for plant organelle research. Plant Cell Physiol 55(1): e1.
  12. Goto-Yamada, S., Mano, S., and Nishimura, M. (2014). The role of peroxisomes in plant reproductive processes. In Sexual reproduction in animals and plants. – Edited by Sawada, H., Inoue, N., and Iwano, M. Springer Japan, pp.419-429.
  13. Shibata, M., Oikawa, K., Yoshimoto, K., Kondo, M., Mano, S., Yamada, K., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2013). Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25(12): 4967-4983.
  14. Cui, S., Mano, S., Yamada, K., Hayashi, M. and Nishimura, M. (2013). Novel proteins interacting with peroxisomal protein receptor PEX7 in Arabidopsis thaliana. Plant Signal Behav 8(10): doi: 10 4161/psb 26829.
  15. Cui, S., Fukao, Y., Mano, S., Yamada, K., Hayashi, M. and Nishimura, M. (2013). Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). J Biol Chem 288(8): 6014-6023.
  16. Mano, S., Kimori, Y., Takeda, T., Miwa, T., Nishikawa, S., Mimura, T., Nagatani, A., and Nishimura, M. (2013) Using image-based resources: databases for plant organelle dynamics and applications based on image information. In Introduction to Sequence and Genome Analysis. Edited by Mishra, A., Nawaz, Z. and Shahid, Z. pp.83-109. iConcept Press.
  17. Negishi, T., Oshima, K., Hattori, M., Kanai, M., Mano, S., Nishimura, M. and Yoshida, K. (2012). Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 7(8): e43189.
  18. Tanaka, Y., Kimura, T., Hikino, K., Goto, S., Nishimura, M., Mano, S., and Nakagawa, T. (2012). Gateway vectors for plant genetic engineering: overview of plant vectors, application for bimolecular fluorescence complementation (BiFC) and multigene construction. Genetic Engineering – Edited by Hugo A. Barrera-Saldaña, InTech 35-58.
  19. Mano, S., Nakamori, C., Fukao, Y., Araki, M., Matsuda, A., Kondo, M. and Nishimura, M. (2011). A defect of peroxisomal membrane protein 38 causes enlargement of peroxisomes. Plant Cell Physiol 52(12): 2157-2172.
  20. Hino, T., Tanaka, Y., Kawamukai, M., Nishimura, K., Mano, S. and Nakagawa, T. (2011). Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci Biotechnol Biochem 75(9): 1848-1852.
  21. Goto, S., Mano, S., Nakamori, C. and Nishimura, M. (2011). Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell 23(4): 1573-1587.
  22. Mano, S., Miwa, T., Nishikawa, S., Mimura, T. and Nishimura, M. (2011). The Plant Organelles Database 2 (PODB2): an updated resource containing movie data of plant organelle dynamics. Plant Cell Physiol 52(2): 244-253.
  23. Nakamura, S., Mano, S., Tanaka, Y., Ohnishi, M., Nakamori, C., Araki, M., Niwa, T., Nishimura, M., Kaminaka, H., Nakagawa, T., Sato, Y. and Ishiguro, S. (2010). Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci Biotechnol Biochem 74(6): 1315-1319.
Protocols by Shoji Mano
  1. Measurement of the Number of Peroxisomes
  2. Measuring the Interactions between Peroxisomes and Chloroplasts by in situ Laser Analysis
  3. Quantification of the Adhesion Strength between Peroxisomes and Chloroplasts by Femtosecond Laser Technology