(*contributed equally to this work) 发布: 2019年05月20日第9卷第10期 DOI: 10.21769/BioProtoc.3238 浏览次数: 4240
评审: Alba BlesaAnonymous reviewer(s)
相关实验方案
从沙门氏菌鼠伤寒血清中纯化细菌淀粉样蛋白“Curli”并检测受感染宿主组织中的 Curli
Murugesan Sivaranjani [...] Aaron P. White
2022年05月20日 2178 阅读
Abstract
Biofilms are bacterial communities in the shape of exopolysaccharide matrix-encased aggregates attached onto interphases able to resist environmental aggressions. The development of bacteria in the shape of biofilms deeply affects the performance of many industrial processes which work with fluidic systems, where bacteria may settle and prosper. As a consequence industrial equipment experiments low performance issues and substantial maintenance costs.
The study of how bacteria of industrial interest such as Pseudomonas putida spread in these fluidic systems is highly dependent on the chosen experimental system to retrieve such data, thus using scaled prototypes becomes an essential step towards the design of a more efficient system to handle biofilms, either to control them or to prevent them. This protocol describes how to assemble, operate and maintain a device to grow and monitor the biofilm spreading pattern of this bacterium (as a function of the fluid hydrodynamics) in a custom-made chamber larger than those typically used in laboratory environments, and how to analyze the information gathered from it in a straightforward fashion. Description of the protocol was thought to be used as a working template not only for the presented case study but for any other potential experiment in different contexts and diverse scales following similar design principles.
Background
The characterization of bacterial biofilm spreading pattern dynamics in fluidic systems is a key issue when trying to gain control of the proliferation of these living organisms. Especially relevant is the case of biofilm presence in industrial environments, where an uncontrolled growth may lead to large economic loses. Typical studies on this area focus their efforts on creating laboratory-scale setups to investigate the effect of different variables to test. These parameters are controlled to monitor subsequent biofilm expansion for every tested experimental condition. However extrapolating these results to an industrial-like fluidic environment is not so straightforward, as equipment, materials and operation conditions may deeply affect biofilm behavior. Furthermore the designs performed for laboratory-scale devices are in many cases incompatible with typical industrial equipment and procedures. As a consequence, the number of studies in the literature using industrial-like devices is very limited.
In this protocol we describe a procedure for assembling, testing and operating an industrial-like device to study the biofilm spreading pattern of platform strain Pseudomonas putida mt-2. The design and operation procedures of the device were specifically chosen to have into account constrains and features typically found when using industrial materials and equipment, delivering a viable solution for given research purposes.
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2019 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Espeso, D. R., Martínez-García, E. and Lorenzo, V. D. (2019). Assembly of a Custom-made Device to Study Spreading Patterns of Pseudomonas putida Biofilms. Bio-protocol 9(10): e3238. DOI: 10.21769/BioProtoc.3238.
分类
微生物学 > 微生物生物膜 > 生物膜培养
微生物学 > 群落分析 > 空间互作
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link