(*contributed equally to this work) 发布: 2018年04月20日第8卷第8期 DOI: 10.21769/BioProtoc.2810 浏览次数: 13216
评审: Tuan Minh TranAnonymous reviewer(s)
Abstract
Botrytis cinerea (B. cinerea) attacks many crops of economic importance, represents one of the most extensively studied necrotrophic pathogens. Inoculation of B. cinerea and phenotypic analysis of plant resistance are key procedures to investigate the mechanism of plant immunity. Here we describe a protocol for B. cinerea inoculation on medium and planta based on our study using the tomato-B. cinerea system.
Keywords: Botrytis cinerea (灰葡萄孢菌)Background
B. cinerea causes serious loss in more than 200 crops worldwide, including many important vegetables and small fruit crops. The broad-spectrum pathogen can infect plant stem, leaf, flower and fruit to produce spores (Dean et al., 2012; van Kan et al., 2017), which prefer to occur under high humidity (Elad et al., 2007). The produced spores pose long lasting threat to diverse hosts (Elad et al., 2007). Based on its scientific and economic importance, B. cinerea was ranked as the second most important plant-pathogenic fungus (Dean et al., 2012). Among B. cinerea host plants, tomato (Solanum lycopersicum), an economically valuable species, also serves as a classic model to study plant immunity (Ryan, 2000; Sun et al., 2011; Rosli and Martin, 2015). To investigate the molecular basis of plant immunity to B. cinerea, we employ a routine procedure to produce B. cinerea spores on artificial media. In addition, we provide detailed methods to infect tomato plants or detached leaves with a controlled strength using the collected spores and quantify disease development. This protocol has been successfully used to reveal the transcriptional regulation of master regulator MYC2 in Jasmonate-mediated plant immunity (Du et al., 2017).
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2018 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Lian, J., Han, H., Zhao, J. and Li, C. (2018). In-vitro and in-planta Botrytis cinerea Inoculation Assays for Tomato. Bio-protocol 8(8): e2810. DOI: 10.21769/BioProtoc.2810.
分类
植物科学 > 植物免疫 > 病害生物测定
微生物学 > 微生物-宿主相互作用 > 体外实验模型
微生物学 > 微生物-宿主相互作用 > 病毒
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link