发布: 2017年10月20日第7卷第20期 DOI: 10.21769/BioProtoc.2587 浏览次数: 14657
评审: Anonymous reviewer(s)
Abstract
The discovery of endothelial colony forming cells (ECFCs) with robust self-renewal and de novo vessel formation potentials suggests that ECFCs can be an excellent cell source for cardiovascular diseases treatment through improving neovascularization in the ischemic tissues. However, their engraftment after transplantation resulted to be low. Previous studies showed mesenchymal stem/stromal cells (MSCs) could improve the survival and capillary formation capacity of ECFCs in co-culture systems. In this article, we describe a protocol for in vitro co-culture of MSCs and ECFCs to prime ECFCs for better engraftment.
Keywords: Endothelial colony forming cells (内皮集落形成细胞)Background
Endothelial progenitor cells (EPC) are defined as a cell population capable of forming new blood vessels through a vasculogenesis process. In 2004, Ingram et al. identified a specific highly proliferative population of EPC in ex vivo culture termed ‘endothelial colony-forming cells (ECFC)’ from human umbilical cord blood (Ingram et al., 2004) and these cells have recently been declared to represent EPCs (Medina et al., 2017). A similar population can also be isolated from the human term placenta tissue with equivalent vascularization potential and at clinically relevant quantities (Patel et al., 2013; Shafiee et al., 2015). Therefore, ECFC transplantation has been proposed as a therapeutical approach for ischemic diseases such as myocardial infarction or critical leg ischemia. However, ECFCs engraftment and vasculogenic potential after transplantation are well documented to be low (Shafiee et al., 2017; Medina et al., 2017). Previous experiments have shown enhanced ECFC engraftment and function by co-transplantation of mesenchymal stem/stromal cells (MSC) with ECFC (Shafiee et al., 2017). In vitro and in the presence of MSC, ECFC showed enhanced survival in serum deprivation conditions. In normal/growth culture conditions, MSC co-culture resulted in reduced ECFC proliferation and altered appearance towards an elongated mesenchymal-like morphology. Further investigations suggested that direct contact with MSC was required for changes in ECFC morphology and proliferation rate (Shafiee et al., 2017). In addition, after being co-cultured with MSCs for 4 days, ‘primed ECFCs’ showed reduced colony forming potential but improved capacity to form tube-like structures on MatrigelTM in vitro (Shafiee et al., 2017). In this article, we describe a protocol for in vitro co-culturing of ECFCs and bone marrow-derived MSCs (BM-MSCs).
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2017 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Shafiee, A. and Khosrotehrani, K. (2017). In vitro Co-culture of Mesenchymal Stem Cells and Endothelial Colony Forming Cells. Bio-protocol 7(20): e2587. DOI: 10.21769/BioProtoc.2587.
分类
干细胞 > 成体干细胞 > 内皮干细胞/祖细胞
发育生物学 > 细胞生长和命运决定 > 血管生成
细胞生物学 > 细胞分离和培养 > 共培养
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link