发布: 2017年10月20日第7卷第20期 DOI: 10.21769/BioProtoc.2452 浏览次数: 7980
评审: Hiroyuki HiraiYunbing MaAnonymous reviewer(s)
Abstract
Hydathodes are plant organs present on leaf margins of a wide range of vascular plants and are the sites of guttation. Both anatomy and physiology of hydathodes are poorly documented. We have recently reported on the anatomy of cauliflower and Arabidopsis thaliana hydathodes and on their infection by the vascular pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) (Cerutti et al., 2017). Because hydathodes are natural infection routes for several pathogens, it is necessary to have a deep knowledge of their anatomy to further better interpret images of infected hydathodes. Here, we described different detailed protocols for gaining information on hydathode anatomy which are applicable to a wide range of plants (including monocots like barley and rice). Nomarsky and confocal microscopy were used to observe clarified thick samples. Optical microscopy in transmitted light and transmission electron microscopy were used to observed thin and ultrathin sections.
Keywords: Cauliflower (花椰菜)Background
In literature, different techniques were used to study hydathodes (Perrin, 1972; Chen and Chen, 2007; Wang et al., 2011; Singh, 2014). From light microscopy (on entire tissues or on section of resin-embedded samples) to scanning or transmission electron microscopy, a large panel of protocols and techniques was available. To our knowledge, these techniques were not used in combination and laser confocal microscopy was never used to depict hydathode structures. Moreover, we noticed variations from protocols to protocols. We presented here different techniques used in combination. They are well-adapted to cauliflower and Arabidopsis thaliana. They have been successfully applied to other plants like monocotyledons (barley and rice) and should be likely used to a larger variety of plant species. We encourage the users to apply these protocols to gain complementary information on the hydathode at different scales during infection.
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2017 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
分类
植物科学 > 植物免疫 > 宿主-细菌相互作用
植物科学 > 植物细胞生物学 > 细胞成像
细胞生物学 > 细胞成像 > 固定组织成像
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link