发布: 2017年01月05日第7卷第1期 DOI: 10.21769/BioProtoc.2091 浏览次数: 9052
评审: HongLok LungKevin Patrick O’RourkeVikash Verma
相关实验方案
基于Fiji ImageJ的全自动化流程开发:批量分析共聚焦图像数据并量化蛋白共定位的Manders系数
Vikram Aditya [...] Wei Yue
2025年04月05日 1415 阅读
Abstract
The three-dimensional organisation of cells in a tissue and their interaction with adjacent cells and extracellular matrix is a key determinant of cellular responses, including how tumour cells respond to stress conditions or therapeutic drugs (Elliott and Yuan, 2011). In vivo, tumour cells are embedded in a stroma formed primarily by fibroblasts that produce an extracellular matrix and enwoven with blood vessels. The 3D mixed cell type spheroid model described here incorporates these key features of the tissue microenvironment that in vivo tumours exist in; namely the three-dimensional organisation, the most abundant stromal cell types (fibroblasts and endothelial cells), and extracellular matrix. This method combined with confocal microscopy can be a powerful tool to carry out drug sensitivity, angiogenesis and cell migration/invasion assays of different tumour types.
Keywords: Mixed cell type 3-dimensional (3D) culture (混合细胞类型三维(3D)培养)Background
The traditional monolayer cell culture (2-dimensional) enforces an artificial environment, which is vastly different from the tissues cells exists in vivo. One of the most critical differences is that in monolayer cultures the cells are polarised, i.e., the surface of the cells facing the culture-plastic and the upper cell surface exposed to the culture medium receive completely different, often opposing signals (Fitzgerald et al., 2015). To address the problem of cell polarization, tumour spheroid cultures are increasingly used in cancer research. Tumour spheroids can replicate the 3-dimensional cell-cell interactions present in a tissue and to some extent paracrine signaling via cytokines and chemokines by reducing their diffusion and dilution by the growth medium that typically occurs in monolayer cultures (Lawlor et al., 2002; Barrera-Rodríguez and Fuentes, 2015). The current tumour-stroma minispheroid protocol is one such method. Compared to the other tumour-spheroid protocols, this method also incorporates additional, key features of the tissue environment, namely stromal cells and extracellular matrix in the spheroid and thus provides a model that replicates the in vivo tumour microenvironment more faithfully.
Materials and Reagents
Equipment
Software
Procedure
文章信息
版权信息
© 2017 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Watters, M. and Szegezdi, E. (2017). Generation of Tumour-stroma Minispheroids for Drug Efficacy Testing. Bio-protocol 7(1): e2091. DOI: 10.21769/BioProtoc.2091.
分类
癌症生物学 > 通用技术 > 肿瘤微环境
细胞生物学 > 细胞成像 > 共聚焦显微镜
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link