发布: 2015年10月20日第5卷第20期 DOI: 10.21769/BioProtoc.1618 浏览次数: 24650
评审: Ningfei AnAnonymous reviewer(s)
Abstract
Using pluripotent stem cells, it is now becoming possible to develop tissue models of organ systems within the body. These organs will allow for the study of organ function, physiology, embryology, and even pathologic processes. Recently, our group developed a model of human small intestine developed from human pluripotent stem cells which when transplanted in vivo, produce a mature, cystic intestinal structure that has digestive functions similar to that of native small intestine (Watson et al., 2014). Intestinal permeability is a primordial function of both the epithelium and associated tight junctions to control nutrient intake and prevent the passage of pathogens. One way to study gastrointestinal paracellular permeability is by determining the ability of fluorophores-conjugated macromolecules (i.e., fluorescein isothiocyanate-dextran (FITC-dextran; or FD4) to cross from the lumen and into circulation (Dong et al., 2014). We were able to test the intestinal permeability by injecting FITC-dextran directly into the lumen of the bioengineered intestine and determining the fluorescence within the blood of the murine host at various time points after injection.
Materials and Reagents
Equipment
Procedure
文章信息
版权信息
© 2015 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Watson, C. L., Mahe, M. M. and Helmrath, M. A. (2015). In vivo Fluorescein Isothiocyanate-dextran (FD4) Permeability Assay. Bio-protocol 5(20): e1618. DOI: 10.21769/BioProtoc.1618.
分类
细胞生物学 > 组织分析 > 组织染色
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link




