发布: 2014年11月20日第4卷第22期 DOI: 10.21769/BioProtoc.1298 浏览次数: 15123
评审: Anonymous reviewer(s)
相关实验方案
从大肠杆菌中大规模纯化III型毒素-抗毒素核糖蛋白复合物及其成分,用于生物物理学研究
Parthasarathy Manikandan [...] Mahavir Singh
2023年07月05日 1031 阅读
Abstract
Lipopolysaccharide is the major constituent of the outer membrane of gram-negative bacteria and, once released from the bacterial surface into the bloodstream, is a potent activator of the host immune system, which can lead to septic shock. LPS has a hydrophilic region consisting of a repeating oligosaccharide that is strain-specific (O-antigen) and a core polysaccharide, which is covalently linked to a hydrophobic lipid moiety (lipid A). Lipid A is the most conserved part and is responsible for the toxicity of LPS. Therefore, finding molecules able to bind to this region and neutralize LPS toxicity is of relevant interest as it may provide new therapies to prevent septic shock (Chen et al., 2006). Several proteins and peptides were reported to bind LPS and alter its toxicity towards reduction and even enhancement (Brandenburg et al., 1998), such as serum albumin (Ohno and Morrison, 1989), lipopolysaccharide binding protein (LBP) (de Haas et al., 1999), casein (López-Expósito et al., 2008), lysozyme, the antibiotic polymyxin B and antimicrobial peptides (Chen et al., 2006). Although some of these proteins are neutral and even anionic/acidic (pI<7) (Jang et al., 2009), due to the amphipathic structure of LPS and the presence of negatively charged phosphate groups on the lipid A, the most important factors that are considered for optimal binding to LPS are a cationic/basic (pI>7) and amphipathic nature (Chen et al., 2006).
Here we describe a competitive ELISA that can be used to identify proteins or peptides that bind LPS, as a first approach before analyzing the possible activity in vitro and in vivo. In this ELISA, serial dilutions of the protein or peptide to be tested are preincubated with a fixed concentration of fluorescein isothiocyanate (FITC)-labeled LPS from Escherichia coli serotype O111:B4 and then added to wells of a microtitre plate which are blocked with a casein hydrolysate that binds LPS (Martínez-Sernández et al., 2014). Binding of the protein to LPS displaces LPS from binding to the casein, which is revealed using a horseradish peroxidase (HRP)-labeled anti-FITC polyclonal conjugate. This method allows simultaneous analysis of several proteins or peptides in a short period of time and no recognizing molecules (e.g., antibodies) to a specific protein or peptide are needed.
Materials and Reagents
Equipment
Procedure
文章信息
版权信息
© 2014 The Authors; exclusive licensee Bio-protocol LLC.
如何引用
Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
分类
微生物学 > 微生物生物化学 > 蛋白质
生物化学 > 蛋白质 > 免疫检测
生物化学 > 脂质 > 脂质-蛋白互作
您对这篇实验方法有问题吗?
在此处发布您的问题,我们将邀请本文作者来回答。同时,我们会将您的问题发布到Bio-protocol Exchange,以便寻求社区成员的帮助。
提问指南
+ 问题描述
写下详细的问题描述,包括所有有助于他人回答您问题的信息(例如实验过程、条件和相关图像等)。
Share
Bluesky
X
Copy link