Published: Vol 5, Iss 24, Dec 20, 2015 DOI: 10.21769/BioProtoc.1679 Views: 11388
Reviewed by: Arsalan DaudiZiqiang ZhuAnonymous reviewer(s)
Protocol Collections
Comprehensive collections of detailed, peer-reviewed protocols focusing on specific topics
Related protocols
Targeting Ultrastructural Events at the Graft Interface of Arabidopsis thaliana by A Correlative Light Electron Microscopy Approach
Clément Chambaud [...] Lysiane Brocard
Jan 20, 2023 1436 Views
Sorghum bicolor Extracellular Vesicle Isolation, Labeling, and Correlative Light and Electron Microscopy
Deji Adekanye [...] Jeffrey L. Caplan
Oct 5, 2024 642 Views
Analysis of Modified Plant Metabolites Using Widely Targeted Metabolite Modificomics
Jianing Zhang [...] Jun Yang
Apr 5, 2025 472 Views
Abstract
The periderm and exodermis of taproots and tuberous taproots contain an extracellular lipid polymer, suberin, deposited in their cell walls. This polymer is intractable in organic solvents, and is co-deposited with chloroform-extractable waxes. These suberin-associated root waxes are typically composed of alkanes, primary alcohols, fatty acids, alkyl ferulates, alkyl caffeates, and alkyl coumarates (Espelie et al., 1980; Li et al., 2007; Kosma et al., 2015). They are believed to contribute to the diffusion barrier properties of suberized cell walls (Soliday et al., 1979), and possibly have other roles yet to be discovered. Here we describe a protocol to extract and analyze waxes associated with root suberin. This fraction of aliphatic components is extracted by whole root immersion in chloroform, and is then chemically modified to prepare samples that are more suitable to gas-chromatography analysis. This protocol is optimized for Arabidopsis thaliana, but can be used with roots of other plants as described herein.
Materials and Reagents
Equipment
Software
Procedure
Representative data
Figure 3. Example chromatogram of Arabidopsis root waxes. Peak IDs are as follows: 1) 17:0 FFA*; 2) 18:0-OH; 3) 18:0 FFA; 4) 20:0-OH; 5) 20:0 FFA; 6) 22:0-OH; 7) 22:0 FFA; 8) 23:0-OH*; 9) β-17:0 MAG*; 10) α-17:0 MAG*; 11) 28:0 Alkane*; 12) cis-13:0 ferulate*; 13) β-20:0 MAG; 14) trans-13:0 ferulate*; 15) α-20:MAG; 16) cis-17:0 coumarate*; 17) 28:1 sterol; 18) 29:2 sterol; 19) 29:1 sterol; 20) trans-17:0 coumarate*; 21) cis-18:0 caffeate; 22) trans-18:0 coumarate; 23) trans-18:0 ferulate; 24) trans-18:0 caffeate; 25) cis-20:0 caffeate; 26) trans-20:0 coumarate; 27) trans-20:0; ferulate; 28) trans-20:0 caffeate; 29) cis-22:0 caffeate; 30) trans-22:0 coumarate; 31) trans-22:0 ferulate; 32) trans-22:0 caffeate. Abbreviations are as follows: FFA = free fatty acid, -OH = primary fatty alcohol, MAG = monoacylglycerol, * indicates an internal standard (used for quantification).
Notes
Acknowledgments
The original version of this protocol was reported in Li et al. (2007) with adjustments made in subsequent publications (Molina et al., 2009; Kosma et al., 2012; Vishwanath et al., 2013) to produce the protocol reported here.
References
Article Information
Copyright
© 2015 The Authors; exclusive licensee Bio-protocol LLC.
How to cite
Kosma, D. K., Molina, I. and Rowland, O. (2015). GC-MS-Based Analysis of Chloroform Extracted Suberin-Associated Root Waxes from Arabidopsis and Other Plant Species. Bio-protocol 5(24): e1679. DOI: 10.21769/BioProtoc.1679.
Category
Plant Science > Plant biochemistry > Lipid
Plant Science > Plant metabolism > Metabolite profiling
Plant Science > Plant physiology > Tissue analysis
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link