Federico Valverde
  • Plant Development Unit. Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Spain
研究方向
  • Plant science
个人信息

Education

Ph.D., University of Sevilla, 1999

Current position

Tenured Researcher at IBVF, CSIC, Sevilla (2009-present)

Publications

  1. Ortiz-Marchena, M. I., Albi, T., Lucas-Reina, E., Said, F. E., Romero-Campero, F. J., Cano, B., Ruiz, M. T., Romero, J. M. and Valverde, F. (2014). Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. Plant Cell 26(2): 565-584.
  2. Coego, A., Brizuela, E., Castillejo, P., Ruiz, S., Koncz, C., del Pozo, J. C., Pineiro, M., Jarillo, J. A., Paz-Ares, J., Leon, J. and Consortium, T. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant J 77(6): 944-953.
  3. Romero-Campero, F. J., Lucas-Reina, E., Said, F. E., Romero, J. M. and Valverde, F. (2013). A contribution to the study of plant development evolution based on gene co-expression networks. Front Plant Sci 4: 291.
  4. Lazaro, A., Valverde, F., Pineiro, M. and Jarillo, J. A. (2012). The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24(3): 982-999.
  5. Valverde, F. (2011). CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62(8): 2453-2463. 
  6. Serrano, G., Herrera-Palau, R., Romero, J. M., Serrano, A., Coupland, G. and Valverde, F. (2009). Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19(5): 359-368.
  7. Romero, J. M. and Valverde, F. (2009). Evolutionarily conserved photoperiod mechanisms in plants: when did plant photoperiodic signaling appear? Plant Signal Behav 4(7): 642-644.
  8. Ventriglia, T., Kuhn, M. L., Ruiz, M. T., Ribeiro-Pedro, M., Valverde, F., Ballicora, M. A., Preiss, J. and Romero, J. M. (2008). Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic. Plant Physiol 148(1): 65-76.
  9.  Jang, S., Marchal, V., Panigrahi, K. C., Wenkel, S., Soppe, W., Deng, X. W., Valverde, F. and Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27(8): 1277-1288.
  10. Hernandez-Ruiz, L., Valverde, F., Jimenez-Nunez, M. D., Ocana, E., Saez-Benito, A., Rodriguez-Martorell, J., Bohorquez, J. C., Serrano, A. and Ruiz, F. A. (2007). Organellar proteomics of human platelet dense granules reveals that 14-3-3zeta is a granule protein related to atherosclerosis. J Proteome Res 6(11): 4449-4457.
  11.  Valverde, F., Ortega, J. M., Losada, M. and Serrano, A. (2005). Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus. Planta 221(6): 937-952.
  12. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660): 1003-1006.