Welcome guest, Login | Register


Ljerka Kunst


Ph.D. in Lipid metabolism, Michigan State University, 1988

Current position

Professor, Department of Botany, University of British Columbia, Vancouver, Canada

Selected publications

  1. Sakuradani, E., Zhao, L., Haslam, T. M. and Kunst, L. (2013). The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta 237(3): 731-738.
  2. Shi, L., Katavic, V., Yu, Y., Kunst, L. and Haughn, G. (2012). Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69(1): 37-46.
  3. Lam, P., Zhao, L., McFarlane, H. E., Aiga, M., Lam, V., Hooker, T. S. and Kunst, L. (2012). RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 159(4): 1385-1395.
  4. Haslam, T. M., Manas-Fernandez, A., Zhao, L. and Kunst, L. (2012). Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160(3): 1164-1174.
  5. Zhao, L., Katavic, V., Li, F., Haughn, G. W. and Kunst, L. (2010). Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J 64(6): 1048-1058.
  6. Kunst, L. and Samuels, L. (2009). Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12(6): 721-727.
  7. Beaudoin, F., Wu, X., Li, F., Haslam, R. P., Markham, J. E., Zheng, H., Napier, J. A. and Kunst, L. (2009). Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150(3): 1174-1191.
  8. Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Jetter, R. and Kunst, L. (2008). Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148(1): 97-107.
  9. Jetter, R. and Kunst, L. (2008). Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54(4): 670-683.
  10. Samuels, L., DeBono, A., Lam, P., Wen, M., Jetter, R. and Kunst, L. (2008). Use of Arabidopsis eceriferum mutants to explore plant cuticle biosynthesis. J Vis Exp(16).
  11. Samuels, L., Kunst, L. and Jetter, R. (2008). Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59: 683-707.
  12. Rowland, O., Lee, R., Franke, R., Schreiber, L. and Kunst, L. (2007). The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581(18): 3538-3544.
  13. Hooker, T. S., Lam, P., Zheng, H. and Kunst, L. (2007). A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19(3): 904-913.
  14. Rowland, O., Zheng, H., Hepworth, S. R., Lam, P., Jetter, R. and Kunst, L. (2006). CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142(3): 866-877.
  15. Zheng, H., Rowland, O. and Kunst, L. (2005). Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5): 1467-1481.
  16. Pighin, J. A., Zheng, H., Balakshin, L. J., Goodman, I. P., Western, T. L., Jetter, R., Kunst, L. and Samuels, A. L. (2004). Plant cuticular lipid export requires an ABC transporter. Science 306(5696): 702-704.
  17. Smith, M. A., Moon, H., Chowrira, G. and Kunst, L. (2003). Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217(3): 507-516.
  18. Kunst, L. and Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42(1): 51-80.
  19. Hooker, T. S., Millar, A. A. and Kunst, L. (2002). Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129(4): 1568-1580.
  20. Rossak, M., Smith, M. and Kunst, L. (2001). Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol 46(6): 717-725.
  21. Millar, A. A., Smith, M. A. and Kunst, L. (2000). All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5(3): 95-101.
  22. Millar, A. A., Clemens, S., Zachgo, S., Giblin, E. M., Taylor, D. C. and Kunst, L. (1999). CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11(5): 825-838.
  23. Millar, A. A., Wrischer, M. and Kunst, L. (1998). Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 10(11): 1889-1902.
  24. Millar, A. A. and Kunst, L. (1997). Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12(1): 121-131.
  25. Katavic, V., Reed, D. W., Taylor, D. C., Giblin, E. M., Barton, D. L., Zou, J., Mackenzie, S. L., Covello, P. S. and Kunst, L. (1995). Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108(1): 399-409.
Protocols by Ljerka Kunst
  1. Wax Analysis of Stem and Rosette Leaves in Arabidopsis thaliana