Welcome guest, Login | Register


Nickolas Anderson


Ph. D., Biochemistry, Purdue University, West Lafayette, IN, August 2014

Current position

Postdoctoral Research Associate for Heartland Plant Innovations and Kansas State University, Manhattan


  1. Shi, J., Pattathil, S., Ramakrishnan, P., Anderson, N. A., Kim, J. I., Venkatachalam, S., Hahn, M. G., Chapple, C., Simmons, B. A. and Singh, S. (2016). Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry.

  2. Brock, M. T., Lucas, L. K., Anderson, N. A., Rubin, M. J., Markelz, R. J., Covington, M. F., Devisetty, U. K., Chapple, C., Maloof, J. N. and Weinig, C. (2016). Genetic architecture, biochemical underpinnings and ecological impact of floral UV patterning. Mol Ecol 25(5): 1122-1140.

  3. Anderson, N. A., Tobimatsu, Y., Ciesielski, P. N., Ximenes, E., Ralph, J., Donohoe, B. S., Ladisch, M. and Chapple, C. (2015). Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell 27(8): 2195-2209.

  4. Kim, J. I., Dolan, W. L., Anderson, N. A. and Chapple, C. (2015). Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. Plant Cell 27(5): 1529-1546.

  5. Anderson, N. A., Bonawitz, N. D., Nyffeler, K. and Chapple, C. (2015). Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis. Plant Physiol 169(3): 1557-1567.

  6. Anderson, N. A. and Chapple, C. (2014). Perturbing Lignin Biosynthesis: Metabolic changes in response to manipulation of the phenylpropanoid pathway. Recent Advances in Polyphenol Research, Volume IV, 39-59 Published by Wiley & Sons.

  7. Bonawitz, N. D., Kim, J. I., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., Ladisch, M. and Chapple, C. (2014). Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509(7500): 376-380.

  8. Ciesielski, P. N., Resch, M. G., Hewetson, B., Killgore, J., Curtin, A., Anderson, N. A., Chiaramonti, A. N., Hurley, D., Sanders, A., Himmel, M. E., Chapple, C., Mosier, N. and Donohoe, B. S. (2014). Engineering plant cell walls: tuning lignin monomer composition for efficient biofuels feedstocks or resilient biomaterials. Green Chemistry 16, 2627-2635.

  9. Garcia, J. R., Anderson, N., Le-Feuvre, R., Iturra, C., Elissetche, J., Chapple, C. and Valenzuela, S. (2014). Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus. Plant Cell Rep 33(8): 1263-1274.

  10. Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes, C., Dima, O., Kim, J. I., Anderson, N., Loque, D., Boerjan, W., Chapple, C. and Ralph, J. (2013). Visualization of plant cell wall lignification using fluorescence-tagged monolignols. Plant J 76(3): 357-366.

Protocols by Nickolas Anderson
  1. Cell Wall-bound p-Coumaric and Ferulic Acid Analysis