Welcome guest, Sign in

Home


Ashok Kumar

Education

Ph.D. in Cancer Immunology/Biochemistry, University of Delhi, Delhi, India, 1996

Current position

Distinguished University Scholar, University of Louisville, Louisville, KY 
Professor (tenured), Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY
Associate Faculty, Department of Neurology, University of Louisville School of Medicine, Louisville, KY

Publications (since 2011)

  1. Simionescu-Bankston, A. and Kumar, A. (2016). Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 94(8): 853-866.

  2. Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M. and Kumar, A. (2016). Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB J.

  3. Hindi, S. M. and Kumar, A. (2016). Toll-like receptor signalling in regenerative myogenesis: friend and foe. J Pathol 239(2): 125-128.

  4. Hindi, S. M. and Kumar, A. (2016). TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest 126(1): 151-168.

  5. Ogura, Y., Hindi, S. M., Sato, S., Xiong, G., Akira, S. and Kumar, A. (2015). TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 6: 10123.

  6. Sato, S., Ogura, Y., Tajrishi, M. M. and Kumar, A. (2015). Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB J 29(3): 988-1002.

  7. Tajrishi, M. M., Shin, J., Hetman, M. and Kumar, A. (2014). DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy. J Biol Chem 289(29): 19985-19999.

  8. Tajrishi, M. M., Sato, S., Shin, J., Zheng, T. S., Burkly, L. C. and Kumar, A. (2014). The TWEAK-Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochem Biophys Res Commun 446(4): 1219-1224.

  9. Ogura, Y., Tajrishi, M. M., Sato, S., Hindi, S. M. and Kumar, A. (2014). Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol 2: 11.

  10. Sato, S., Ogura, Y. and Kumar, A. (2014). TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 5: 18.

  11. Tajrishi, M. M., Zheng, T. S., Burkly, L. C. and Kumar, A. (2014). The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 25(2): 215-225.

  12. Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S. and Kumar, A. (2014). Regulatory circuitry of TWEAK-Fn14 system and PGC-1alpha in skeletal muscle atrophy program. FASEB J 28(3): 1398-1411.

  13. Hindi, S. M., Sato, S., Choi, Y. and Kumar, A. (2014). Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 23(6): 1492-1505.

  14. Ogura, Y., Mishra, V., Hindi, S. M., Kuang, S. and Kumar, A. (2013). Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-kappaB signaling pathways. J Biol Chem 288(49): 35159-35169.

  15. Sato, S., Ogura, Y., Mishra, V., Shin, J., Bhatnagar, S., Hill, B. G. and Kumar, A. (2013). TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity. Skelet Muscle 3(1): 18.

  16. Shin, J., Tajrishi, M. M., Ogura, Y. and Kumar, A. (2013). Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 45(10): 2266-2279.

  17. Hindi, S. M., Shin, J., Ogura, Y., Li, H. and Kumar, A. (2013). Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 8(8): e72121.

  18. Hindi, S. M., Tajrishi, M. M. and Kumar, A. (2013). Signaling mechanisms in mammalian myoblast fusion. Sci Signal 6(272): re2.

  19. Hindi, S. M., Paul, P. K., Dahiya, S., Mishra, V., Bhatnagar, S., Kuang, S., Choi, Y. and Kumar, A. (2012). Reciprocal interaction between TRAF6 and notch signaling regulates adult myofiber regeneration upon injury. Mol Cell Biol 32(23): 4833-4845.

  20. Paul, P. K., Bhatnagar, S., Mishra, V., Srivastava, S., Darnay, B. G., Choi, Y. and Kumar, A. (2012). The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 32(7): 1248-1259.

  21. Kumar, A., Bhatnagar, S. and Paul, P. K. (2012). TWEAK and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 15(3): 233-239.

  22. Bhatnagar, S., Panguluri, S. K. and Kumar, A. (2012). Gene profiling studies in skeletal muscle by quantitative real-time polymerase chain reaction assay. Methods Mol Biol 798: 311-324.

  23. Bhatnagar, S. and Kumar, A. (2012). The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting. Curr Mol Med 12(1): 3-13.
  24. Bhatnagar, S., Mittal, A., Gupta, S. K. and Kumar, A. (2012). TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J Cell Physiol 227(3): 1042-1051.
  25. Dahiya, S., Bhatnagar, S., Hindi, S. M., Jiang, C., Paul, P. K., Kuang, S. and Kumar, A. (2011). Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 20(22): 4345-4359.
  26. Dahiya, S., Givvimani, S., Bhatnagar, S., Qipshidze, N., Tyagi, S. C. and Kumar, A. (2011). Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. J Immunol 187(5): 2723-2731.
  27. Paul, P. K. and Kumar, A. (2011). TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy 7(5): 555-556.
Protocols by Ashok Kumar
  1. Isolation, Culture, and Staining of Single Myofibers