Welcome guest, Sign in

Home


Kenji Yamada

Education

Ph.D. in Science, Department of Molecular Biomechanics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Japan, 1999

Current position

Group Leader, The Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland

Publications (since 2005)

  1. Ogasawara, K., Yamada, K., Hatsugai, N., Imada, C. and Nishimura, M. (2016). Hexose Oxidase-Mediated Hydrogen Peroxide as a Mechanism for the Antibacterial Activity in the Red Seaweed Ptilophora subcostata. PLoS One 11(2): e0149084.
  2. Oikawa, K. et al. (2015). Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat. Plants 1, 15035.
  3. Hatsugai, N., Yamada, K., Goto-Yamada, S. and Hara-Nishimura, I. (2015). Vacuolar processing enzyme in plant programmed cell death. Front Plant Sci 6: 234.
  4. Goto-Yamada, S., Mano, S., Yamada, K., Oikawa, K., Hosokawa, Y., Hara-Nishimura, I. and Nishimura, M. (2015). Dynamics of the Light-Dependent Transition of Plant Peroxisomes. Plant Cell Physiol 56(7): 1264-1271.
  5. Shibata, M., Oikawa, K., Yoshimoto, K., Goto-Yamada, S., Mano, S., Yamada, K., Kondo, M., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2014). Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy 10(5): 936-937.
  6. Nakano, R. T., Yamada, K., Bednarek, P., Nishimura, M. and Hara-Nishimura, I. (2014). ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Front Plant Sci 5: 73.
  7. Yamada, K., Nagano, A. J., Nishina, M., Hara-Nishimura, I. and Nishimura, M. (2013). Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. Plant Physiol 161(1): 108-120.
  8. Shibata, M., Oikawa, K., Yoshimoto, K., Kondo, M., Mano, S., Yamada, K., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. (2013). Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25(12): 4967-4983.
  9. Cui, S., Mano, S., Yamada, K., Hayashi, M. and Nishimura, M. (2013). Novel proteins interacting with peroxisomal protein receptor PEX7 in Arabidopsis thaliana. Plant Signal Behav 8(10): doi: 10 4161/psb 26829.
  10. Cui, S., Fukao, Y., Mano, S., Yamada, K., Hayashi, M. and Nishimura, M. (2013). Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). J Biol Chem 288(8): 6014-6023.
  11. Nakayama, M., Kaneko, Y., Miyazawa, Y., Fujii, N., Higashitani, N., Wada, S., Ishida, H., Yoshimoto, K., Shirasu, K., Yamada, K., Nishimura, M. and Takahashi, H. (2012). A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta 236(4): 999-1012.
  12. Yamada, K., Hara-Nishimura, I. and Nishimura, M. (2011). Unique defense strategy by the endoplasmic reticulum body in plants. Plant Cell Physiol 52(12): 2039-2049.
  13. Yamada, K., Nagano, A. J., Ogasawara, K., Hara-Nishimura, I. and Nishimura, M. (2009). The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific β-glucosidases. Plant Signal Behav 4(9): 849-852.
  14. Ogasawara, K., Yamada, K., Christeller, J. T., Kondo, M., Hatsugai, N., Hara-Nishimura, I. and Nishimura, M. (2009). Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant Cell Physiol 50(3): 480-488.
  15. Yamada, K. and Nishimura, M. (2008). Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3(9): 660-662.
  16. Yamada, K., Nagano, A. J., Nishina, M., Hara-Nishimura, I. and Nishimura, M. (2008). NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. Plant Cell 20(9): 2529-2540.
  17. Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I. and Nishimura, M. (2007). Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282(52): 37794-37804.
  18. Yamada, K., Shimada, T., Nishimura, M. and Hara-Nishimura, I. (2005). A VPE family supporting various vacuolar functions in plants. Physiol. Plant. 123, 369-375.
  19. Yamada, K., Fuji, K., Shimada, T., Nishimura, M. and Hara-Nishimura, I. (2005). Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway. Plant J 41(6): 888-898.
  20. Nakaune, S., Yamada, K., Kondo, M., Kato, T., Tabata, S., Nishimura, M. and Hara-Nishimura, I. (2005). A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17(3): 876-887.
  21. Maehr, R., Hang, H. C., Mintern, J. D., Kim, Y. M., Cuvillier, A., Nishimura, M., Yamada, K., Shirahama-Noda, K., Hara-Nishimura, I. and Ploegh, H. L. (2005). Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice. J Immunol 174(11): 7066-7074.
  22. Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M. and Hara-Nishimura, I. (2005). Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280(38): 32914-32920.
Protocols by Kenji Yamada
  1. Measuring the Interactions between Peroxisomes and Chloroplasts by in situ Laser Analysis
  2. Quantification of the Adhesion Strength between Peroxisomes and Chloroplasts by Femtosecond Laser Technology