Welcome guest, Login | Register


Brice Enjalbert


Ph.D. in Molecular Biology, Research center for systems biology and process engineering (LISBP), National Institute of Applied Sciences (INSA), Toulouse, France, 2001

Current position

Assistant Professor in Molecular Biology, Research center for systems biology and process engineering (LISBP), National Institute of Applied Sciences (INSA), Toulouse, France (since 2009)


  1. Saulou-Berion, C., Gonzalez, I., Enjalbert, B., Audinot, J. N., Fourquaux, I., Jamme, F., Cocaign-Bousquet, M., Mercier-Bonin, M. and Girbal, L. (2015). Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses. PLoS One 10(12): e0145748.
  2. Enjalbert, B., Cocaign-Bousquet, M., Portais, J. C. and Letisse, F. (2015). Acetate Exposure Determines the Diauxic Behavior of Escherichia coli during the Glucose-Acetate Transition. J Bacteriol 197(19): 3173-3181.
  3. Enjalbert, B., Letisse, F. and Portais, J. C. (2013). Physiological and Molecular Timing of the Glucose to Acetate Transition in Escherichia coli. Metabolites 3(3): 820-837.
  4. Pietrella, D., Enjalbert, B., Zeidler, U., Znaidi, S., Rachini, A., Vecchiarelli, A. and d'Enfert, C. (2012). A luciferase reporter for gene expression studies and dynamic imaging of superficial Candida albicans infections. Methods Mol Biol 845: 537-546.
  5. Enjalbert, B., Jourdan, F. and Portais, J. C. (2011). Intuitive visualization and analysis of multi-omics data and application to Escherichia coli carbon metabolism. PLoS One 6(6): e21318.
  6. Holcombe, L. J., McAlester, G., Munro, C. A., Enjalbert, B., Brown, A. J., Gow, N. A., Ding, C., Butler, G., O'Gara, F. and Morrissey, J. P. (2010). Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology 156(Pt 5): 1476-1486.
  7. Rodaki, A., Bohovych, I. M., Enjalbert, B., Young, T., Odds, F. C., Gow, N. A. and Brown, A. J. (2009). Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell 20(22): 4845-4855.
  8. Enjalbert, B., Rachini, A., Vediyappan, G., Pietrella, D., Spaccapelo, R., Vecchiarelli, A., Brown, A. J. and d'Enfert, C. (2009). A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun 77(11): 4847-4858.
  9. Enjalbert, B., Moran, G. P., Vaughan, C., Yeomans, T., Maccallum, D. M., Quinn, J., Coleman, D. C., Brown, A. J. and Sullivan, D. J. (2009). Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Mol Microbiol 72(1): 216-228.
  10. Wimalasena, T. T., Enjalbert, B., Guillemette, T., Plumridge, A., Budge, S., Yin, Z., Brown, A. J. and Archer, D. B. (2008). Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol 45(9): 1235-1247.
  11. Schmidt, P., Walker, J., Selway, L., Stead, D., Yin, Z., Enjalbert, B., Weig, M. and Brown, A. J. (2008). Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics 8(3): 534-544.
  12. Enjalbert, B., MacCallum, D. M., Odds, F. C. and Brown, A. J. (2007). Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun 75(5): 2143-2151.
  13. Argimon, S., Wishart, J. A., Leng, R., Macaskill, S., Mavor, A., Alexandris, T., Nicholls, S., Knight, A. W., Enjalbert, B., Walmsley, R., Odds, F. C., Gow, N. A. and Brown, A. J. (2007). Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6(4): 682-692.
  14. Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J. and Quinn, J. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17(2): 1018-1032.
  15. Enjalbert, B. and Whiteway, M. (2005). Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 4(7): 1203-1210.
  16. Garcia-Sanchez, S., Mavor, A. L., Russell, C. L., Argimon, S., Dennison, P., Enjalbert, B. and Brown, A. J. (2005). Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16(6): 2913-2925.
  17. Nicholls, S., Straffon, M., Enjalbert, B., Nantel, A., Macaskill, S., Whiteway, M. and Brown, A. J. (2004). Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3(5): 1111-1123.
  18. Enjalbert, B., Parrou, J. L., Teste, M. A. and Francois, J. (2004). Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift. Mol Genet Genomics 271(6): 697-708.
  19. Enjalbert, B., Nantel, A. and Whiteway, M. (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14(4): 1460-1467.
  20. Teste, M. A., Enjalbert, B., Parrou, J. L. and Francois, J. M. (2000). The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme. FEMS Microbiol Lett 193(1): 105-110.
  21. Enjalbert, B., Parrou, J. L., Vincent, O. and Francois, J. (2000). Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen and readily mobilize it in a glucose-depleted medium. Microbiology 146 ( Pt 10): 2685-2694.
  22. Parrou, J. L., Enjalbert, B. and Francois, J. (1999). STRE- and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose. Yeast 15(14): 1471-1484.
  23. Parrou, J. L., Enjalbert, B., Plourde, L., Bauche, A., Gonzalez, B. and Francois, J. (1999). Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15(3): 191-203.
Protocols by Brice Enjalbert
  1. Calculation of Microorganism Lag Times as a Measure of Adaptative Capability between Different Growth Conditions