Search
Coauthors
Gajendra Azad Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, India
1 protocol

Sakshi Chauhan Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, India
1 protocol

Raghuvir Singh Tomar
  • Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, India
  • 1 Author merit

Education

Ph.D. in Zoology, Center for Advanced Study in Zoology, Banaras Hindu University, Varanasi, India, 2001

Current Position

Associate Professor of Biology, Indian institute of Science Education and Research Bhopal, India

Publications (since 2012)

  1. Sariki, S. K., Sahu, P. K., Golla, U., Singh, V., Azad, G. K. and Tomar, R. S. (2016). Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. FEBS J 283(22): 4056-4083.
  2. Golla, U., Joseph, D. and Tomar, R. S. (2016). Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model. Sci Rep 6: 35322.
  3. Chauhan, S., Mandal, P. and Tomar, R. S. (2016). Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease. Biochemistry 55(38): 5464-5482.
  4. Golla, U., Adhikary, A., Mondal, A. K., Tomar, R. S. and Konar, S. (2016). Synthesis, structure, magnetic and biological activity studies of bis-hydrazone derived Cu(II) and Co(II) coordination compounds. Dalton Trans 45: 11849-11863.
  5. Azad, G. K. and Tomar, R. S. (2016). The multifunctional transcription factor Rap1: a regulator of yeast physiology. Front Biosci (Landmark Ed) 21: 918-930.
  6. Azad, G. K. and Tomar, R. S. (2016). Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae. Yeast 33(6): 217-226.
  7. Chauhan, S. and Tomar, R. S. (2016). Efficient expression and purification of biologically active human cystatin proteins. Protein Expr Purif 118: 10-17.
  8. Singh, V., Azad, G. K., Sariki, S. K. and Tomar, R. S. (2015). Flocculation in Saccharomyces cerevisiae is regulated by RNA/DNA helicase Sen1p. FEBS Lett 589(20 Pt B): 3165-3174.
  9. Golla, U., Bandi, G. and Tomar, R. S. (2015). Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast. Chem Res Toxicol 28(6): 1246-1264.
  10. Azad, G. K., Singh, V., Baranwal, S., Thakare, M. J. and Tomar, R. S. (2015). The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae. FEBS Lett 589(1): 59-67.
  11. Azad, G. K., Singh, V., Thakare, M. J., Baranwal, S. and Tomar, R. S. (2014). Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae. BMC Microbiol 14: 317-327.
  12. Mandal, P., Verma, N., Chauhan, S. and Tomar, R. S. (2013). Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288(26): 18743-18757.
  13. Baranwal, S., Azad, G. K., Singh, V. and Tomar, R. S. (2014). Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways. Antimicrob Agents Chemother 58(9): 5552-5566.
  14. Azad, G. K., Singh, V. and Tomar, R. S. (2014). Assessment of the biological pathways targeted by isocyanate using N-succinimidyl N-methylcarbamate in budding yeast Saccharomyces cerevisiae. PLoS One 9(3): e92993.
  15. Singh, V., Azad, G. K., Reddy, M. A., Baranwal, S. and Tomar, R. S. (2014). Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae. Eur J Pharmacol 736: 77-85.
  16. Singh, V., Azad, G. K., Mandal, P., Reddy, M. A. and Tomar, R. S. (2014). Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. FEBS Lett 588(6): 1044-1052.
  17. Balkrishna, S. J., Kumar, S., Azad, G. K., Bhakuni, B. S., Panini, P., Ahalawat, N., Tomar, R. S., Detty, M. R. and Kumar, S. (2014). An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org Biomol Chem 12(8): 1215-1219.
  18. Azad, G. K., Singh, V., Mandal, P., Singh, P., Golla, U., Baranwal, S., Chauhan, S. and Tomar, R. S. (2014). Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 4: 77-89.
  19. Azad, G. K. and Tomar, R. S. (2014). Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 41(8): 4865-4879.
  20. Azad, G. K. and Tomar, R. S. (2014). Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 41(5): 2717-2730.
  21. Mandal, P., Verma, N., Azad, G. K., Singh, V., Golla, U. and Tomar, R. S. (2014). Epigenetics: Role of histone proteases in cellular functions and diseases. In: Maulik, N. and Karagiannis, T. (Eds.). Molecular Mechanisms and Physiology of Disease: Implications for Epigenetics and Health, Springer.
  22. Azad, G. K., Singh, V., Golla, U. and Tomar, R. S. (2013). Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae. PLoS One 8(3): e59003.
  23. Golla, U., Singh, V., Azad, G. K., Singh, P., Verma, N., Mandal, P., Chauhan, S. and Tomar, R. S. (2013). Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS One 8(5): e64798.
  24. Mandal, P., Verma, N., Chauhan, S. and Tomar, R. S. (2013). Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288(26): 18743-18757.
  25. Azad, G. K., Balkrishna, S. J., Sathish, N., Kumar, S. and Tomar, R. S. (2012). Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins. Biochem Pharmacol 83(2): 296-303.
  26. Mandal, P., Azad, G. K. and Tomar, R. S. (2012). Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 421(2): 261-267.
1 Protocol published
In vitro Histone H3 Cleavage Assay for Yeast and Chicken Liver H3 Protease
Authors:  Sakshi Chauhan, Gajendra Kumar Azad and Raghuvir Singh Tomar, date: 01/05/2017, view: 2225, Q&A: 0
Histone proteins are subjected to a wide array of reversible and irreversible post-translational modifications (PTMs) (Bannister and Kouzarides, 2011; Azad and Tomar, 2014). The PTMs on histones are known to regulate chromatin structure and ...