Rosa Molina Departamento de Producción Vegetal, Universitat Politècnica de València, España
2 protocols

Jesus Vicente-Carbajosa Biotecnología, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), España
2 protocols

Stephan Pollmann Biotecnología, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), España
2 protocols

Antonio Granell Genómica y Biotecnología del fruto, Insituto de Biología Molecular y Celular de Plantas (IBMCP), España
2 protocols

Joaquín Medina
  • Biotecnología, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), España
  • 2 Author merit


Ph. D. in Molecular Biology, Department of Biochemistry, School of Agricultural Engineering, Madrid Technical University, Spain (UPM), 1995

Current position

Researcher in Biotechnology Department located in the Centre for Plant Biotechnology and Genomics (Centro de Biotecnología y Genómica de Plantas, UPM-INIA)


  1. Zanin, M., Alcazar, J. M., Carbajosa, J. V., Paez, M. G., Papo, D., Sousa, P., Menasalvas, E. and Boccaletti, S. (2014). Parenclitic networks: uncovering new functions in biological data. Scientific reports 4.
  2. Corrales, A. R., Nebauer, S. G., Carrillo, L., Fernandez-Nohales, P., Marques, J., Renau-Morata, B., Granell, A., Pollmann, S., Vicente-Carbajosa, J., Molina, R. V. and Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot 65(4): 995-1012.
  3. Hentrich, M., Sanchez-Parra, B., Perez Alonso, M. M., Carrasco Loba, V., Carrillo, L., Vicente-Carbajosa, J., Medina, J. and Pollmann, S. (2013). YUCCA8 and YUCCA9 overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signal Behav 8(11): e26363.
  4. Hentrich, M., Bottcher, C., Duchting, P., Cheng, Y., Zhao, Y., Berkowitz, O., Masle, J., Medina, J. and Pollmann, S. (2013). The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74(4): 626-637.
  5. Novillo, F., Medina, J., Rodriguez-Franco, M., Neuhaus, G. and Salinas, J. (2012). Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. J Exp Bot 63(1): 293-304.
  6. Catala, R., Medina, J. and Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci U S A 108(39): 16475-16480.
  7. Medina, J., Catala, R. and Salinas, J. (2011). The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci 180(1): 3-11.
  8. José-Antonio Fernández, Omar Santana, José-Luis Guardiola, Rosa-Victoria Molina, Pat Heslop-Harrison, George Borbely, Ferdinando Branca, Eleni Maloupa, Thierry Talou, Jean-Marie Thiercelin, Khalil Gasimov, Hasan Vurdu, Marta Roldán, Marcela Santaella, Enrique Sanchís, Amparo García-Luis, Gyula Suranyi, Attila Molnár, Gabor Sramko, Gergely Gulyas, Luckacs Balazs, Orsolya Horvat, María-Fernanda Rodríguez, Raúl Sánchez-Vioque, Miguel-Ángel Escolano, José-Vicente Reina, Nikos Krigas, Teresa Pastor, Begoña Renau-Morata, Christine Raynaud, Oruc Ibadli, Moschos Polissiou, Maria Z. Tsimidou, Athanasios Tsaftaris, Mahmoud Sharaf-Eldin, Joaquin Medina, Theophanis Constantinidis, Theophanis Karamplianis, Marcelino De-Los-Mozos-Pascual The World Saffron and Crocus collection. Strategies for establishment, management, characterization and utilization. Genetic Resources and Crop evolution vol. 58, no1, pp. 125-137, (2010).
  9. De-Los-Mozos-Pascual, M., Santana-Méridas, O., Rodríguez-Conde, M. F., Sánchez-Vioque, R., Pastor-Férriz, T., Guardiola, J. L., García-Luis, A., Molina, R. V., Sanchís-Duato, E., Medina-Alcázar, J. And Fernández. J. A. (2009). Current status of the germoplasm Spanish collection of saffron and wild relatives. Acta Horticulturae (ISHS) 850:303-308.
  10. Novillo, F., Medina, J. and Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci U S A 104(52): 21002-21007.
  11. Medina, J., Ballesteros, M. L. and Salinas, J. (2007). Phylogenetic and functional analysis of Arabidopsis RCI2 genes. Journal of experimental botany 58(15-16): 4333-4346.
  12. Medina, J., Rodriguez-Franco, M., Penalosa, A., Carrascosa, M. J., Neuhaus, G. and Salinas, J. (2005). Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant J 42(4): 586-597.
  13. Welsch, R., Medina, J., Giuliano, G., Beyer, P. and Von Lintig, J. (2003). Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta 216(3): 523-534.
  14. Medina, J., Catala, R. and Salinas, J. (2001). Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125(4): 1655-1666.
  15. Medina, J. (2001). Zipping between transcription factors: the ABA transduction pathway. Trends Plant Sci 6(3): 96.
  16. FFernandez, J. A., Escribano, J., Piqueras, A. and Medina, J. (2000). A proteoglycan from saffron corn (Crocus sativus L.) inhibits root elongation of Nicotiana tabacum seedlings and is highly cytotoxic on tobacco cells and protoplasts. Journal Experimental Botany 51:228-234.
  17. Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119(2): 463-470.
  18. Fernández, J. A., Piqueras, A., Medina, A. and Escribano, J. (2000). A proteoglycan from saffron corn (Crocus sativus L.) inhibits root elongation of Nicotiana tabacum seedlings and is highly cytotoxic on tobacco cells and protoplasts. Cell and Developmental Biology of Arabinogalactan-proteins. In: Academic, K. (ed). 7:280-281.
  19. Escribano, J., Piqueras, A., Medina, J., Rubio, A., Alvarez-Orti, M. and Fernandez, J. A. (1999). Production of a cytotoxic proteoglycan using callus culture of saffron corms (Crocus sativus L.). J Biotechnol 73(1): 53-59.
  20. Joaquín Medina and Julio Salinas. Molecular characterization of CBF2 and CBF3, two genes from Arabidopsis that encode AP2 domain-containing proteins and are induced by low temperatures. Ed BIOS,11:83-87.York (UK), (1999).
  21. Schultz, T. F., Medina, J., Hill, A. and Quatrano, R. S. (1998). 14-3-3 proteins are part of an abscisic acid-VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10(5): 837-847.
  22. Medina, J. and Quatrano, R. S. (1998). Molecular Cloning and sequence analysis of cDNA encoding a SEC14 like protein from rice (Accesion No U88068) (PGR 98-042). Plant Phisiology, 116.1192.
  23. Medina, J. and Quatrano, R. S. (1996). Characterisation of a rice cDNA (Accesion No L76377) encoding an Osmotin-like protein PGR 96-54. Plant Physiology, 11:1354.
  24. Nantel, A., Medina, J. and Quatrano, R. S. (1995). An improved protocol for library screening by protein-protein interactions with biotinylated MBP-fusion proteins. Plant Mol Biol Reporter, 13:164-174.
  25. Carbonero, P., Salcedo, G., Sánchez-Monge, R., García-Maroto, F., Royo, J., Gómez, L.,  Medina, J.  and Diaz, I. (1993). A multigene family from cereals which encodes Inhibitors of trypsin and heterologous a-amylases.Innovations in proteases and their inhibitors. In: Aviles, F. (ed). 19:333-348.
  26. Medina, J., Hueros, G. and Carbonero, P.  (1993). Clonning of cDNA, expression and chromosomal location of genes encoding the three types of subunits of Barley tetrameric inhibitor of insect a-amylase. Plant Mol Biol 12:34-44.
  27. Carbonero, P., Vicente-Carbajosa, J., Royo, J., Medina, J., Martinez de Ilarduya, O., Acevedo, F., Gadour, K., Oñate, L. and Diaz, I. (1994). A multigene family from barley encoding inhibitors of trypsin and heterologous a-amylases: gene characterization and expression. Wheat kernels proteins: molecular and Functional aspects. In: Aviles, F. X. (ed).
2 Protocols published
Salinity Assay in Arabidopsis
Salinity is an important environmental constraint to crop productivity in arid and semi-arid regions of the world. The evaluation of the responses to salinity of different Arabidopsis ecotypes or transgenic lines is important to identify ...
Salinity Assay in Tomato
Tomato is one of the most important horticultural crops worldwide, and is cultivated in semi-arid regions in which soil and groundwater salinity is an increasing limitation to yield. The assessment of the responses of new cultivars to salt and the ...