Search

Satoshi Harashima
  • Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Japan
  • 1 Author merit

Education

Ph.D in Microbial Genetics, Department of Fermentation Technology, Osaka University, 1977

Current position

Professor Emeritus of Osaka University
Professor and Chair, Department of Applied Microbial Technology, Faculty of Life Science and Biotechnology, Sojo University

Publications (since 2010)

  1. Sasano, Y., Kariya, T., Usugi, S., Sugiyama, M. and Harashima, S. (2017). Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator. AMB Express 7(1): 32.
  2. Kitichantaropas, Y., Boonchird, C., Sugiyama, M., Kaneko, Y., Harashima, S. and Auesukaree, C. (2016). Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 6(1): 107.
  3. Zhou, Y., Yuikawa, N., Nakatsuka, H., Maekawa, H., Harashima, S., Nakanishi, Y. and Kaneko, Y. (2016). Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha. Curr Genet 62(3): 595-605.
  4. Sugiyama, M., Akase, S. P., Nakanishi, R., Kaneko, Y. and Harashima, S. (2016). Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J Biosci Bioeng 122(4): 415-420.
  5. Sasano, Y., Nagasawa, K., Kaboli, S., Sugiyama, M. and Harashima, S. (2016). CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep 6: 30278.
  6. Kaboli, S., Miyamoto, T., Sunada, K., Sasano, Y., Sugiyama, M. and Harashima, S. (2016). Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J Biosci Bioeng 121(6): 638-644.
  7. Novia, H., Sugiyama, M. and Harashima, S. (2015). Candida tropicalis Isolated from Tuak, a North Sumatera Indonesian Traditional Beverage, for Bioethanol Production. Microbiol Biotech Let 43(3): 1-8.
  8. Natesuntorn, W., Iwami, K., Matsubara, Y., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2015). Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 5: 12510.
  9. Numamoto, M., Tagami, S., Ueda, Y., Imabeppu, Y., Sasano, Y., Sugiyama, M., Maekawa, H. and Harashima, S. (2015). Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. J Biosci Bioeng 120(2): 121-127.
  10. Sasano, Y., Yamagishi, K., Tanikawa, M., Nakazawa, T., Sugiyama, M., Kaneko, Y. and Harashima, S. (2015). Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae. J Biosci Bioeng 119(5): 526-531.
  11. Sharmin, D., Sasano, Y., Sugiyama, M. and Harashima, S. (2015). Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 119(4): 392-398.
  12. Numamoto, M., Sasano, Y., Hirasaki, M., Sugiyama, M., Maekawa, H. and Harashima, S. (2015). The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae. J Biochem 157(1): 53-64.
  13. Sharmin, D., Sasano, Y., Sugiyama, M. and Harashima, S. (2014). Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10): 393-409.
  14. Kaboli, S., Yamakawa, T., Sunada, K., Takagaki, T., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2014). Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network. Nucleic Acids Res 42(15): 9838-9853.
  15. Sugiyama, M., Akase, S. P., Nakanishi, R., Horie, H., Kaneko, Y. and Harashima, S. (2014). Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 80(11): 3488-3495.
  16. Sangwallek, J., Kaneko, Y., Tsukamoto, T., Marui, M., Sugiyama, M., Ono, H., Bamba, T., Fukusaki, E. and Harashima, S. (2014). Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Delta12- and Delta15-fatty acid desaturases in Hansenula polymorpha. Gene 533(1): 110-118.
  17. Lavina, W. A., Shahsavarani, H., Saidi, A., Sugiyama, M., Kaneko, Y. and Harashima, S. (2014). Suppression mechanism of the calcium sensitivity in Saccharomyces cerevisiae ptp2Deltamsg5Delta double disruptant involves a novel HOG-independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1. J Biosci Bioeng 117(2): 135-141.
  18. Khatun, F., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2013). Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication. Appl Microbiol Biotechnol 97(20): 9011-9019.
  19. Sangwallek, J., Kaneko, Y., Sugiyama, M., Ono, H., Bamba, T., Fukusaki, E. and Harashima, S. (2013). Ketoacyl synthase domain is a major determinant for fatty acyl chain length in Saccharomyces cerevisiae. Arch Microbiol 195(12): 843-852.
  20. Shahsavarani, H., Hasegawa, D., Yokota, D., Sugiyama, M., Kaneko, Y., Boonchird, C. and Harashima, S. (2013). Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J Biosci Bioeng 115(1): 20-23.
  21. Lavina, W. A., Hermansyah, Sugiyama, M., Kaneko, Y. and Harashima, S. (2013). Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration. J Biosci Bioeng 115(2): 138-146.
  22. Khatun, F., Kurata, K., Chuwattanakul, V., Sugiyama, M., Kaneko, Y. and Harashima, S. (2013). Increased transcription of RPL40A and RPL40B is important for the improvement of RNA production in Saccharomyces cerevisiae. J Biosci Bioeng 116(4): 423-432.
  23. Sooksai, S., Chewchanlertfa, P., Kaneko, Y., Harashima, S. and Laoteng, K. (2013). Alterations in growth and fatty acid profiles under stress conditions of Hansenula polymorpha defective in polyunsaturated fatty acid synthesis. Mol Biol Rep 40(8): 4935-4945.
  24. Suzuki, T., Sakamoto, T., Sugiyama, M., Ishida, N., Kambe, H., Obata, S., Kaneko, Y., Takahashi, H. and Harashima, S. (2013). Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. J Biosci Bioeng 115(5): 467-474.
  25. Park, A. H., Sugiyama, M., Harashima, S. and Kim, Y. H. (2012). Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J Microbiol Biotechnol 22(2): 184-189.
  26. Ueda, Y., Ikushima, S., Sugiyama, M., Matoba, R., Kaneko, Y., Matsubara, K. and Harashima, S. (2012). Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes. J Biosci Bioeng 113(6): 675-682.
  27. Auesukaree, C., Koedrith, P., Saenpayavai, P., Asvarak, T., Benjaphokee, S., Sugiyama, M., Kaneko, Y., Harashima, S. and Boonchird, C. (2012). Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng 114(2): 144-149.
  28. Chuwattanakul, V., Sugiyama, M., Khatun, F., Kurata, K., Tomita, I., Kaneko, Y. and Harashima, S. (2012). Increased transcription of NOP15, involved in ribosome biogenesis in Saccharomyces cerevisiae, enhances the production yield of RNA as a source of nucleotide seasoning. J Biosci Bioeng 114(1): 17-22.
  29. Dwiarti, L., Boonchird, C., Harashima, S. and Park, E. Y. (2012). Simultaneous saccharification and fermentation of paper sludge without pretreatment using cellulase from Acremonium cellulolyticus and thermotolerant Saccharomyces cerevisiae. Biomass Bioener 42: 114–122.
  30. Suzuki, T., Sugiyama, M., Wakazono, K., Kaneko, Y. and Harashima, S. (2012). Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113(4): 421-430.
  31. Shahsavarani, H., Sugiyama, M., Kaneko, Y., Chuenchit, B. and Harashima, S. (2012). Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 30(6): 1289-1300.
  32. Benjaphokee, S., Hasegawa, D., Yokota, D., Asvarak, T., Auesukaree, C., Sugiyama, M., Kaneko, Y., Boonchird, C. and Harashima, S. (2012). Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. N Biotechnol 29(3): 379-386.
  33. Benjaphokee, S., Koedrith, P., Auesukaree, C., Asvarak, T., Sugiyama, M., Kaneko, Y., Boonchird, C. and Harashima, S. (2012). CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. N Biotechnol 29(2): 166-176.
  34. Akao, T., Yashiro, I., Hosoyama, A., Kitagaki, H., Horikawa, H., Watanabe, D., Akada, R., Ando, Y., Harashima, S., Inoue, T., Inoue, Y., Kajiwara, S., Kitamoto, K., Kitamoto, N., Kobayashi, O., Kuhara, S., Masubuchi, T., Mizoguchi, H., Nakao, Y., Nakazato, A., Namise, M., Oba, T., Ogata, T., Ohta, A., Sato, M., Shibasaki, S., Takatsume, Y., Tanimoto, S., Tsuboi, H., Nishimura, A., Yoda, K., Ishikawa, T., Iwashita, K., Fujita, N. and Shimoi, H. (2011). Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6): 423-434.
  35. Sugiyama, M., Nugroho, S., Iida, N., Sakai, T., Kaneko, Y. and Harashima, S. (2011). Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae. J Biochem 150(1): 103-111.
  36. Chuwattanakul, V., Kim, Y. H., Sugiyama, M., Nishiuchi, H., Miwa, H., Kaneko, Y. and Harashima, S. (2011). Construction of a Saccharomyces cerevisiae strain with a high level of RNA. J Biosci Bioeng 112(1): 1-7.
  37. Katakura, Y., Moukamnerd, C., Harashima, S. and Kino-oka, M. (2011). Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. J Biosci Bioeng 111(3): 343-345.
  38. Hirasaki, M., Horiguchi, M., Numamoto, M., Sugiyama, M., Kaneko, Y., Nogi, Y. and Harashima, S. (2011). Saccharomyces cerevisiae protein phosphatase Ppz1 and protein kinases Sat4 and Hal5 are involved in the control of subcellular localization of Gln3 by likely regulating its phosphorylation state. J Biosci Bioeng 111(3): 249-254.
  39. Moukamnerd, C., Kino-oka, M., Sugiyama, M., Kaneko, Y., Boonchird, C., Harashima, S., Noda, H., Ninomiya, K., Shioya, S. and Katakura, Y. (2010). Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol. Appl Microbiol Biotechnol 88(1): 87-94.
  40. Hirasaki, M., Nakamura, F., Yamagishi, K., Numamoto, M., Shimada, Y., Uehashi, K., Muta, S., Sugiyama, M., Kaneko, Y., Kuhara, S. and Harashima, S. (2010). Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae. J Biosci Bioeng 109(5): 433-441.
  41. Hermansyah, Lavina, W. A., Sugiyama, M., Kaneko, Y. and Harashima, S. (2010). Identification of protein kinase disruptions as suppressors of the calcium sensitivity of S. cerevisiae Deltaptp2 Deltamsg5 protein phosphatase double disruptant. Arch Microbiol 192(3): 157-165.
1 Protocol published
CRISPR-PCS Protocol for Chromosome Splitting and Splitting Event Detection in Saccharomyces cerevisiae
Authors:  Yu Sasano and Satoshi Harashima, date: 05/20/2017, view: 1340, Q&A: 0
Chromosome engineering is an important technology with applications in basic biology and biotechnology. Chromosome splitting technology called PCS (PCR-mediated Chromosome Splitting) has already been developed as a fundamental chromosome engineering ...