Charles Hocart Mass Spectrometry Facility, Research School of Biology, The Australian National University, Australia
1 protocol

Thy Truong Mass Spectrometry Facility, Research School of Biology, The Australian National University, Australia
1 protocol

Jason Ng The Australian National University
2 protocols

Ulrike Mathesius
  • Division of Plant Science, Research School of Biology, The Australian National University, Australia
  • 2 Author merit


Ph.D. in Biochemistry and Molecular Biology, The Australian National University, 2000

Current position

Associate Professor in Plant Science, Research School of Biology, The Australian National University, Canberra, Australia

Publications (since 2010)

  1. Goh, C. H., Nicotra, A. B. and Mathesius, U. (2016). The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. Plant Cell Environ 39(4): 883-896.
  2. Schneebeli, K., Mathesius, U., Zwart, A.B., Bragg, J.N., Vogel, J.P., Watt, M. (2016). Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8. Functional Plant Biology 43: 189-198.
  3. Shabala, S., White, R., Djordjevic, M.A., Ruan, Y.L., Mathesius, U. (2015). Root to shoot signaling: diverse molecules, pathways and functions. Functional Plant Biology 43: 87-104.
  4. Beckmann, E. A., Estavillo, G. M., Mathesius, U., Djordjevic, M. A. and Nicotra, A. B. (2015). The plant detectives: innovative undergraduate teaching to inspire the next generation of plant biologists. Front Plant Sci 6: 729.
  5. Ng, J. L., Perrine-Walker, F., Wasson, A. P. and Mathesius, U. (2015). The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. Plants (Basel) 4(3): 606-643.
  6. Ng, J. L., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F. and Mathesius, U. (2015). Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. Plant Cell 27(8): 2210-2226.
  7. Schneebeli, K., Mathesius, U., Watt, M. (2015). Brachypodium distachyon is a pathosystem model for the study of the wheat root disease Rhizoctonia solani AG 8. Plant Pathology 64: 91-100.
  8. Veliz-Vallejos, D. F., van Noorden, G. E., Yuan, M. and Mathesius, U. (2014). A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5: 551.
  9. George, D. T., Behm, C. A., Hall, D. H., Mathesius, U., Rug, M., Nguyen, K. C. and Verma, N. K. (2014). Shigella flexneri infection in Caenorhabditis elegans: cytopathological examination and identification of host responses. PLoS One 9(9): e106085.
  10. Ferguson, B. J. and Mathesius, U. (2014). Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40(7): 770-790.
  11. Kurdyukov, S., Mathesius, U., Nolan, K. E., Sheahan, M. B., Goffard, N., Carroll, B. J. and Rose, R. J. (2014). The 2HA line of Medicago truncatula has characteristics of an epigenetic mutant that is weakly ethylene insensitive. BMC Plant Biol 14: 174.
  12. George, D. T., Mathesius, U., Behm, C. A. and Verma, N. K. (2014). The periplasmic enzyme, AnsB, of Shigella flexneri modulates bacterial adherence to host epithelial cells. PLoS One 9(4): e94954.
  13. Mortier, V., Wasson, A., Jaworek, P., De Keyser, A., Decroos, M., Holsters, M., Tarkowski, P., Mathesius, U. and Goormachtig, S. (2014). Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol 202(2): 582-593.
  14. Goh, C. H., Veliz Vallejos, D. F., Nicotra, A. B. and Mathesius, U. (2013). The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39(7): 826-839.
  15. Cazzonelli, C. I., Vanstraelen, M., Simon, S., Yin, K., Carron-Arthur, A., Nisar, N., Tarle, G., Cuttriss, A. J., Searle, I. R., Benkova, E., Mathesius, U., Masle, J., Friml, J. and Pogson, B. J. (2013). Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8(7): e70069.
  16. Weston, L. A. and Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39(2): 283-297.
  17. Jin, J., Watt, M. and Mathesius, U. (2012). The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiol 159(1): 489-500.
  18. Hassan, S. and Mathesius, U. (2012). The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9): 3429-3444.
  19. Vincent, D., Du Fall, L. A., Livk, A., Mathesius, U., Lipscombe, R. J., Oliver, R. P., Friesen, T. L. and Solomon, P. S. (2012). A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. Mol Plant Pathol 13(5): 467-482.
  20. Williams, M.E., Mathesius, U. (2011). Intimate Alliances: Plants and their Microsymbionts. Teaching Tools in Plant Biology. The Plant Cell (online) doi/10.1105/tpc.111.tt1111.
  21. Mathesius, U., Djordjevic, M. A., Oakes, M., Goffard, N., Haerizadeh, F., Weiller, G. F., Singh, M. B. and Bhalla, P. L. (2011). Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 11(9): 1707-1719.
  22. Teplitski, M., Mathesius, U. and Rumbaugh, K. P. (2011). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111(1): 100-116.
  23. Mathesius, U., Watt, M. (2011). Rhizosphere signals for plant-microbe interactions: implications for field-grown plants. In: U. Lüttge et al. (eds.), Progress in Botany 72: 125-161. Springer-Verlag Berlin Heidelberg.
  24. Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., Crespi, M. and Frugier, F. (2011). MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65(4): 622-633.
  25. Ignjatovic, V., Lai, C., Summerhayes, R., Mathesius, U., Tawfilis, S., Perugini, M. A. and Monagle, P. (2011). Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One 6(2): e17213.
  26. Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F. and van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15(12): 684-692.
  27. Hassan, S., Behm, C.A., Mathesius, U. (2010). Effectors of plant parasitic nematodes that re-program root cell development. Functional Plant Biology 37: 933–942.
  28. Laffont, C., Blanchet, S., Lapierre, C., Brocard, L., Ratet, P., Crespi, M., Mathesius, U. and Frugier, F. (2010). The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. Plant Physiol 153(4): 1597-1607.
  29. Mathesius, U. (2010). The role of auxin in root-symbiont and root-pathogen interactions – from development to defense. Progress in Botany 71: 185-210. (Eds. Lüttge, U.E., Beyschlag, W., Büdel, B., Francis, D. ). Springer Verlag Berlin, Heidelberg.
2 Protocols published
Quantifying Auxin Metabolites in Young Root Tissue of Medicago truncatula by Liquid Chromatography Electrospray-ionisation Quadrupole Time-of-flight (LC-ESI-QTOF) Tandem Mass Spectrometry
Authors:  Jason Liang Pin Ng, Thy T. Truong, Charles H. Hocart and Ulrike Mathesius, date: 06/20/2016, view: 1907, Q&A: 0
Auxins represent a major group of phytohormones controlling plant development. The spatio-temporal regulation of auxin gradients is essential for the initiation, growth and correct development of plant organs. Because auxins and their metabolites ...
Measuring Auxin Transport Capacity in Seedling Roots of Medicago truncatula
Authors:  Jason Liang Pin Ng and Ulrike Mathesius, date: 06/20/2016, view: 2542, Q&A: 0
Measurement of auxin transport capacity provides quantitative data on the physiological machinery involved in auxin transport within plants. This technique is easy to perform and gives quick results. Radiolabelled auxin (indole-3-acetic-acid) is fed ...