Search
Coauthors
Pilar García-Agustín Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, Spain
2 protocols

Eugenio Llorens Universitat Jaume I
2 protocols

Loredana Scalschi Universitat Jaume I
2 protocols

Ana González-Hernández Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, Spain
1 protocol

Gemma Camañes
  • Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, Spain
  • 2 Author merit

Education

Ph.D. in Biology sciences, Department of Experimental Sciences, Universitat Jaume I, 2007

Current position

Associate Professor in Plant Physiology and Biochemistry , Department of Agricultural Sciences and Natural Environment, Universitat Jaume I, Castellón de la Plana, Spain

Publications

  1. Camañes, G., Scalschi, L., Vicedo, B., Gonzñlez-Bosch, C. and García-Agustín, P. (2015). An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Plant J 84(1): 125-139.
  2. Fernandez-Crespo, E., Scalschi, L., Llorens, E., Garcia-Agustin, P. and Camanes, G. (2015). NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation. J Exp Bot.
  3. Scalschi, L., Sanmartin, M., Camañes, G., Troncho, P., Sanchez-Serrano, J. J., García-Agustín, P. and Vicedo, B. (2015). Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J 81(2): 304-315.
  4. Pastor, V., Gamir, J., Camañes, G., Cerezo, M., Sanchez-Bel, P. and Flors, V. (2014). Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina. Front Plant Sci 5: 231.
  5. Fernandez-Crespo, E., Pastor-Gómez, R., Matallana, E., Scalschi, L., Llorens, E., Camañes, G. and García-Agustín, P. (2014). NH4+ induces antioxidant cellular machinery and provides resistance to salt stress in citrus plants. Tree Struct Funct 28(6):1693-1704.
  6. Scalschi, L., Camañes, G., Llorens, E., Fernandez-Crespo, E., Lopez, M. M., García-Agustín, P. and Vicedo, B. (2014). Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants. PLoS One 9(9): e106429.
  7. Scalschi, L., Vicedo, B., Camañes, G., Fernández-Crespo, E., Lapeña, L., González-Bosch, C. and Garcia-Agustin, P. (2013). Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Mol Plant Pathol 14(4): 342-355.
  8. García-Robles, I., Ochoa-Campuzano, C., Fernández-Crespo, E., Camañes, G., Martínez-Ramírez, A. C., González-Bosch, C., García-Agustín, P., Rausell, C. and Real, M. D. (2013). Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle. Int J Mol Sci 14(6): 12138-12156.
  9. Camañes, G., Pastor, V., Cerezo, M., García-Agustín, P. and Flors Herrero, V. (2012). A deletion in the nitrate high affinity transporter NRT2.1 alters metabolomic and transcriptomic responses to Pseudomonas syringae. Plant Signal Behav 7(6): 619-622.
  10. Fernández-Crespo, E., Camañes, G. and García-Agustín, P. (2012). Ammonium enhances resistance to salinity stress in citrus plants. J Plant Physiol 169(12): 1183-1191.
  11. Pacheco, R., García-Marcos, A., Manzano, A., de Lacoba, M. G., Camañes, G., García- Agustín, P., Díaz-Ruiz, J. R. and Tenllado, F. (2012). Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 25(5): 709-723.
  12. Camañes, G., Pastor, V., Cerezo, M., García-Andrade, J., Vicedo, B., García-Agustín, P. and Flors, V. (2012). A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158(2): 1054-1066.
  13. Peréz-Tienda, J., Valderas, A., Camañes, G., García-Agustín, P. and Ferrol, N. (2012). Kinetics of NH (4) (+) uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22(6): 485-491.
  14. Camañes, G., Bellmunt, E., García-Andrade, J., García-Agustín, P. and Cerezo, M. (2012). Reciprocal regulation between AtNRT2.1 and AtAMT1.1 expression and the kinetics of NH(4)(+) and NO(3)(-) influxes. J Plant Physiol 169(3): 268-274.
  15. Kravchuk, Z., Vicedo, B., Flors, V., Camañes, G., González-Bosch, C. and García-Agustín, P. (2011). Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. J Plant Physiol 168(4): 359-366.
  16. Camañes, G., Cerezo, M., Primo-Millo, E., Gojon, A. and García-Agustín, P. (2009). Ammonium transport and CitAMT1 expression are regulated by N in Citrus plants. Planta 229(2): 331-342.
  17. Erb, M., Gordon-Weeks, R., Flors, V., Camañes, G., Turlings, T. C. and Ton, J. (2009). Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signal Behav 4(7): 636-638.
  18. Sánchez-López, J., Camañes, G., Flors, V., Vicent, C., Pastor, V., Vicedo, B., Cerezo, M. and García-Agustín, P. (2009). Underivatized polyamine analysis in plant samples by ion pair LC coupled with electrospray tandem mass spectrometry. Plant Physiol Biochem 47(7): 592-598.
  19. Camañes, G., Cerezo, M., Primo-Millo, E., Gojon, A. and García-Agustín, P. (2007). Ammonium transport and CitAMT1 expression are regulated by light and sucrose in Citrus plants. J Exp Bot 58(11): 2811-2825.
  20. Cerezo, M., Camañes, G., Flors, V., Primo-Millo, E. and García-Agustín, P. (2007). Regulation of nitrate transport in citrus rootstocks depending on nitrogen availability. Plant Signal Behav 2(5): 337-342.
2 Protocols published
Putrescine Biosynthesis Inhibition in Tomato by DFMA and DFMO Treatment
This protocol can be used to inhibit the biosynthesis of polyamines, specifically putrescine, in tomato plants grown with NH4+ as a solely N source. In general, polyamines are positively charged small metabolites implicated in ...
Quantification of Callose Deposition in Plant Leaves
Callose is an amorphous homopolymer, composed of β-1, 3-glucan, which is widespread in higher plants. Callose is involved in multiple aspects of plant growth and development. It is synthetized in plants at the cell plate during cytokinesis, in ...