Guillermo Selman Department of Molecular Genetics, University of Toronto, Canada
1 protocol

Ashwin Seetharaman Department of Molecular Genetics, University of Toronto, Canada
1 protocol

Kevin Chan Department of Molecular Genetics, University of Toronto, Canada
1 protocol

Peter John Roy
  • Department of Molecular Genetics, University of Toronto, Canada
  • 1 Author merit


Ph.D., Department of Molecular and Medical Genetics, the University of Toronto, Toronto, ON, Canada, 1999

Current position

Full Professor in Department of Molecular Genetics, the University of Toronto, Toronto, Canada (2012-present)


  1. Chan, K. K.*, Seetharaman, A.*, Bagg, R., Selman, G., Zhang, Y., Kim, J. and Roy, P. J.§ (2014). EVA-1 functions as an UNC-40 Co-receptor to enhance attraction to the MADD-4 guidance cue in Caenorhabditis elegans. PLoS Genet 10(8): e1004521.
  2. Morf, M. K., Rimann, I., Alexander, M., Roy, P. and Hajnal, A. (2013). The Caenorhabditis elegans homolog of the Opitz syndrome gene, madd-2/Mid1, regulates anchor cell invasion during vulval development. Dev Biol 374(1): 108-114.
  3. Tharmalingam, S., Burns, A. R., Roy, P. J. and Hampson, D. R. (2012). Orthosteric and allosteric drug binding sites in the Caenorhabditis elegans mgl-2 metabotropic glutamate receptor. Neuropharmacology 63(4): 667-674.
  4. Burns, A., and Roy, P. (2012). To kill a mocking worm: strategies to improve Caenorhabditis elegans as a model system for use in anthelmintic discovery. In: Caffrey, C. and Selzer, P. (eds). Parasitic helminths: targets, drugs and vaccines. Wiley VCH.
  5. Seetharaman, A., Selman, G., Puckrin, R., Barbier, L., Wong, E., D'Souza, S. A. and Roy, P. J.§ (2011). MADD-4 is a secreted cue required for midline-oriented guidance in Caenorhabditis elegans. Dev Cell 21(4): 669-680.
  6. Luciani, G. M., Magomedova, L., Puckrin, R., Urbanus, M. L., Wallace, I. M., Giaever, G., Nislow, C., Cummins, C. L.§ and Roy, P. J.§ (2011). Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat Chem Biol 7(12): 891-893.
  7. Wallace, I. M., Urbanus, M. L., Luciani, G. M., Burns, A. R., Han, M. K., Wang, H., Arora, K., Heisler, L. E., Proctor, M., St Onge, R. P., Roemer, T., Roy, P. J., Cummins, C. L., Bader, G. D., Nislow, C. and Giaever, G. § (2011). Compound prioritization methods increase rates of chemical probe discovery in model organisms. Chem Biol 18(10): 1273-1283.
  8. Alexander, M., Selman, G., Seetharaman, A., Chan, K. K., D'Souza, S. A., Byrne, A. B. and Roy, P. J.§ (2010). MADD-2, a homolog of the Opitz syndrome protein MID1, regulates guidance to the midline through UNC-40 in Caenorhabditis elegans. Dev Cell 18(6): 961-972.
  9. Burns, A. R., Wallace, I. M., Wildenhain, J., Tyers, M., Giaever, G., Bader, G. D., Nislow, C., Cutler, S. R. and Roy, P. J.§ (2010). A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat Chem Biol 6(7): 549-557.
  10. Alexander, M.*, Chan, K. K.*, Byrne, A. B.*, Selman, G., Lee, T., Ono, J., Wong, E., Puckrin, R., Dixon, S. J. and Roy, P. J. § (2009). An UNC-40 pathway directs postsynaptic membrane extension in Caenorhabditis elegans. Development 136(6): 911-922.
  11. Wang, W.§, Sun, Y., Dixon, S., Alexander, M., and Roy, P. (2009). An automated micropositioning system for investigating C. elegans locomotive behavior. JALA 269-276.
  12. Hui, K.*, Kwok, T. C.*, Kostelecki, W., Leen, J., Roy, P. J.§ and Feng, Z. P.§ (2009). Differential sensitivities of CaV1.2 IIS5-S6 mutants to 1,4-dihydropyridine analogs. Eur J Pharmacol 602(2-3): 255-261.
  13. Kwok, T. C.*, Hui, K.*, Kostelecki, W., Ricker, N., Selman, G., Feng, Z. P.§ and Roy, P. J.§ (2008). A genetic screen for dihydropyridine (DHP)-resistant worms reveals new residues required for DHP-blockage of mammalian calcium channels. PLoS Genet 4(5): e1000067.
  14. Dixon, S. J.*, Alexander, M.*, Chan, K. K. and Roy, P. J.§ (2008). Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol 318(1): 153-161.
  15. Arnoldo, A., Curak, J., Kittanakom, S., Chevelev, I., Lee, V. T., Sahebol-Amri, M., Koscik, B., Ljuma, L., Roy, P. J., Bedalov, A., Giaever, G., Nislow, C., Merrill, A. R., Lory, S. and Stagljar, I. § (2008). Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 4(2): e1000005.
  16. Von Stetina, S. E., Watson, J. D., Fox, R. M., Olszewski, K. L., Spencer, W. C., Roy, P. J. and Miller, D. M., 3rd§ (2007). Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8(7): R135.
  17. Byrne, A. B., Weirauch, M. T., Wong, V., Koeva, M., Dixon, S. J., Stuart, J. M. § and Roy, P. J. § (2007). A global analysis of genetic interactions in Caenorhabditis elegans. J Biol 6(3): 8.
  18. Burns, A. R., Kwok, T. C., Howard, A., Houston, E., Johanson, K., Chan, A., Cutler, S. R., McCourt, P. and Roy, P. J. § (2006). High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc 1(4): 1906-1914.
  19. Kwok, T. C., Ricker, N., Fraser, R., Chan, A. W., Burns, A., Stanley, E. F., McCourt, P., Cutler, S. R. and Roy, P. J. § (2006). A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441(7089): 91-95.
  20. Dixon, S. J., Alexander, M., Fernandes, R., Ricker, N. and Roy, P. J.§ (2006). FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development 133(7): 1263-1275.
  21. Roy, P. J. and Morris, Q. (2005). Network news: functional modules revealed during early embryogenesis in C. elegans. Dev Cell 9(3): 307-308.
  22. Dixon, S. J. and Roy, P. J. § (2005). Muscle arm development in Caenorhabditis elegans. Development 132(13): 3079-3092.
  23. Roy, P. J., Stuart, J. M., Lund, J. and Kim, S. K. § (2002). Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418(6901): 975-979.
  24. Warren, C. E., Krizus, A., Roy, P. J., Culotti, J. G. and Dennis, J. W.§ (2002). The Caenorhabditis elegans gene, gly-2, can rescue the N-acetylglucosaminyltransferase V mutation of Lec4 cells. J Biol Chem 277(25): 22829-22838.
  25. Ginzburg, V. E., Roy, P. J. and Culotti, J. G.§ (2002). Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development 129(9): 2065-2078.
  26. Roy, P. J., Zheng, H., Warren, C. E. and Culotti, J. G.§ (2000). mab-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in Caenorhabditis elegans. Development 127(4): 755-767.
  27. Nash, B., Colavita, A., Zheng, H., Roy, P. J. and Culotti, J. G.§ (2000). The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev 14(19): 2486-2500.
  28. Warren, C. E., Krizus, A., Partridge, E., Lau, J. Y. T., Roy, P. J., Zhang, L. J., Culotti, J. G., and Dennis, J. W.§ (1999). beta 6 N-acetylglucosaminyl-transferase homologues in C. elegans. Glycobiology 9, 47.
  29. Wang, X., Roy, P. J., Holland, S. J., Zhang, L. W., Culotti, J. G. and Pawson, T.§ (1999). Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell 4(6): 903-913.
  30. Suzuki, Y., Yandell, M. D., Roy, P.J., Fleischmann, M., Krishna, S., Savage-Dunn, C., Ross, R. M., Mueller, F., Padgett, R. W., and Wood, W. B.§ (1998). A C.elegans BMP2,4 homologue determines body size and contributes to male tail patterning. Development 126, 241-250.
  31. Zheng, Y., Roy, P. J., Liang, P. and MacRae, T. H.§ (1998). Cloning and sequencing of an alpha-tubulin cDNA from Artemia franciscana: evidence for translational regulation of alpha-tubulin synthesis. Biochim Biophys Acta 1442(2-3): 419-426.

    *Denotes equal contribution
    §Denotes corresponding author(s)
1 Protocol published
Immunoprecipitation of Proteins in Caenorhabditis elegans
Authors:  Kevin K. Chan, Ashwin Seetharaman, Guillermo Selman and Peter John Roy, date: 04/05/2015, view: 4725, Q&A: 1
Immunoprecipitation (IP) is a biochemical technique to precipitate a protein out of solution using an antigen that can specifically bind to that protein. IP can be performed to isolate and concentrate one particular protein from a sample of ...