Wolf Frommer Department of Plant Biology, Carnegie Science, USA
2 protocols

Roberto De Michele CNR-IGV CNR - IBBR
1 protocol

Cindy Cooke Department of Plant Biology, Carnegie Institution for Science, USA
1 protocol

Guido Grossmann
  • Cell Networks-Cluster of Excellence and Centre for Organismal Studies (COS) Heidelberg Bioresources, Universität Heidelberg, Germany
Research focus
  • Plant science
  • 1 Author merit
  • 1 Reviewer merit


Ph.D., Universität Regensburg, Germany, 2008

Current position

Independent CellNetworks Group Leader, Centre for Organismal Studies, Cluster of Excellence CellNetworks, Universität Heidelberg, Germany (since 01/2013)


  1. Denninger, P., Bleckmann, A., Lausser, A., Vogler, F., Ott, T., Ehrhardt, D. W., Frommer, W. B., Sprunck, S., Dresselhaus, T. and Grossmann, G. (2014). Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5: 4645.
  2. Jones, A. M., Xuan, Y., Xu, M., Wang, R. S., Ho, C. H., Lalonde, S., You, C. H., Sardi, M. I., Parsa, S. A., Smith-Valle, E., Su, T., Frazer, K. A., Pilot, G., Pratelli, R., Grossmann, G., Acharya, B. R., Hu, H. C., Engineer, C., Villiers, F., Ju, C., Takeda, K., Su, Z., Dong, Q., Assmann, S. M., Chen, J., Kwak, J. M., Schroeder, J. I., Albert, R., Rhee, S. Y. and Frommer, W. B. (2014). Border control--a membrane-linked interactome of Arabidopsis. Science 344(6185): 711-716.
  3. Jones, A. M., Danielson, J. A., Manojkumar, S. N., Lanquar, V., Grossmann, G. and Frommer, W. B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3: e01741.
  4. Lanquar, V., Grossmann, G., Vinkenborg, J. L., Merkx, M., Thomine, S. and Frommer, W. B. (2014). Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202(1): 198-208.
  5. De Michele, R., Ast, C., Loque, D., Ho, C. H., Andrade, S. L., Lanquar, V., Grossmann, G., Gehne, S., Kumke, M. U. and Frommer, W. B. (2013). Fluorescent sensors reporting the activity of ammonium transceptors in live cells. Elife 2: e00800.
  6. Malinsky, J., Opekarova, M., Grossmann, G. and Tanner, W. (2013). Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu Rev Plant Biol 64: 501-529. (Review)
  7. Jones, A. M.*, Grossmann, G.*, Danielson, J. A., Sosso, D., Chen, L. Q., Ho, C. H. and Frommer, W. B. (2013). In vivo biochemistry: applications for small molecule biosensors in plant biology. Curr Opin Plant Biol 16(3): 389-395. (Review)
  8. Grossmann, G., Meier, M., Cartwright, H. N., Sosso, D., Quake, S. R., Ehrhardt, D. W. and Frommer, W. B. (2012). Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp (65).
  9. Stradalova, V., Blazikova, M., Grossmann, G., Opekarova, M., Tanner, W. and Malinsky, J. (2012). Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 7(4): e35132.
  10. Grossmann, G., Guo, W. J., Ehrhardt, D. W., Frommer, W. B., Sit, R. V., Quake, S. R. and Meier, M. (2011). The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23(12): 4234-4240.
  11. Hou, B. H., Takanaga, H., Grossmann, G., Chen, L. Q., Qu, X. Q., Jones, A. M., Lalonde, S., Schweissgut, O., Wiechert, W. and Frommer, W. B. (2011). Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6(11): 1818-1833.
  12. Gutierrez, R. *, Grossmann, G.*, Frommer, W. B. and Ehrhardt, D. W. (2010). Opportunities to explore plant membrane organization with super-resolution microscopy. Plant Physiol 154(2): 463-466. (Review)
  13. Loibl, M., Grossmann, G., Stradalova, V., Klingl, A., Rachel, R., Tanner, W., Malinsky, J. and Opekarova, M. (2010). C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot Cell 9(8): 1184-1192.
  14. Stradalova, V., Stahlschmidt, W., Grossmann, G., Blazikova, M., Rachel, R., Tanner, W. and Malinsky, J. (2009). Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122(Pt 16): 2887-2894.
  15. Grossmann, G., Malinsky, J., Stahlschmidt, W., Loibl, M., Weig-Meckl, I., Frommer, W. B., Opekarova, M. and Tanner, W. (2008). Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol 183(6): 1075-1088.
  16. Grossmann, G. and Tanner, W. (2008). Kompartimente der Plasmamembran - Inseln der Ruhe in rauher See. BIOspektrum 14, 695-697. (Review)
  17. Lauwers, E., Grossmann, G. and Andre, B. (2007). Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: essential role in transport activity and normal control by ubiquitination. Mol Biol Cell 18(8): 3068-3080.
  18. Grossmann, G.*, Opekarova, M.*, Malinsky, J.*, Weig-Meckl, I. and Tanner, W. (2007). Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 26(1): 1-8.
  19. Grossmann, G., Opekarova, M., Novakova, L., Stolz, J. and Tanner, W. (2006). Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot Cell 5(6): 945-953.
  20. Hagen, I., Ecker, M., Lagorce, A., Francois, J. M., Sestak, S., Rachel, R., Grossmann, G., Hauser, N. C., Hoheisel, J. D., Tanner, W. and Strahl, S. (2004). Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52(5): 1413-1425.
    *Equal contributions
1 Protocol published
Quantification of Extracellular Ammonium Concentrations and Transporter Activity in Yeast Using AmTrac Fluorescent Sensors
Authors:  Cindy Ast, Wolf B. Frommer, Guido Grossmann and Roberto De Michele, date: 01/05/2015, view: 3648, Q&A: 0
AmTracs are the first example of “activity sensors”, since they report the activity of ammonium transporters by means of fluorescence readout in vivo (De Michele et al., 2013). AmTracs are based on a single fluorescent protein, a ...