Molecular Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
1 Q&A 2285 Views Apr 20, 2022

Due to overlapping sequences with linear cognates, identifying internal sequences of circular RNA (circRNA) remains a challenge. Recently, we have developed a full-length circRNA sequencing method (circFL-seq) and computational pipeline, to profile ordinary and fusion circRNA at the isoform level. Compared to short-read RNA-seq, rolling circular reverse transcription and nanopore long-read sequencing of circFL-seq make circRNA reads more than tenfold enriched, and show advantages for identification of both short (<100 nt) and long (>2,000 nt) circRNA transcripts. circFL-seq allows identification of differential alternative splicing suggested wide application prospects for functional studies of internal sequences in circRNAs. In addition, the experimental protocol and computational pipeline of circFL-seq shows better sensitivity and precision for identification of back-splicing junctions than current long-read sequencing methods. Together, the accurate identification and quantification of full-length circRNAs makes circFL-seq a potential tool for large-scale screening of functional circRNAs.

0 Q&A 3996 Views Apr 20, 2020
Mutations in RNA-binding proteins (RBPs) such as TDP43 are associated with transcriptome-wide splicing defects and cause severe neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The impact of RBP mutations on splicing function is routinely studied using PCR-based bulk measurements. However, the qualitative and low-throughput nature of this assay make quantitative and systematic analyses, as well as screening approaches, difficult to implement. To overcome this hurdle, we have developed a quantitative, high-throughput flow cytometry assay to investigate TDP43 splicing function on a single-cell level
0 Q&A 5471 Views Jun 5, 2019
The construction of Hybrid minigenes provides a robust and simple strategy to study the effects of disease-causing mutations on mRNA splicing when biological material from patient cells is not available. Hybrid minigenes can be used as splicing reporter plasmids allow RNA expression and heterologous splicing reactions between synthetic splicing signals in the vector and endogenous splicing signals in a cloned genomic DNA fragment that contains one or more introns and exons. Minigene-based assay has been used extensively to test the effect of mutations in the splicing of a target sequence. They can also be used to test the ability of CRISPR/Cas9 and one or more associated gRNAs to target specific sequences in the minigene, and determine the effect of these editing events on splicing. As an example, it is shown that CRISPR/Cas9-based, targeted excision of short intronic sequences containing mutations which create cryptic splice signals, can restore normal splicing in a CFTR Hybrid minigene.
0 Q&A 10784 Views Mar 5, 2018
Disease-associated mutations influencing mRNA splicing are referred to as splice mutations. The majority of splice mutations are found on exon-intron boundaries defining canonical donor and acceptor splice sites. However, mutations in the coding region (exonic mutations) can also affect mRNA splicing. Exact knowledge of the disease mechanism of splice mutations is essential for developing optimal treatment strategies. Given the large number of disease-associated mutations thus far identified, there is an unmet need for methods to systematically analyze the effects of pathogenic mutations on mRNA splicing. As splicing can vary between cell types, splice mutations need to be tested under native conditions if possible. A commonly used tool for the analysis of mRNA splicing is the construction of minigenes carrying exonic and intronic sequences. Here, we describe a protocol for the design and cloning of minigenes into recombinant adeno-associated virus (rAAV) vectors for gene delivery and investigation of mRNA splicing in a native context. This protocol was developed for minigene-based analysis of mRNA splicing in retinal cells, however, in principle it is applicable to any cell type, which can be transduced with rAAV vectors.
0 Q&A 16706 Views Feb 20, 2017
CRISPR/Cas9-mediated genome editing relies on a guide RNA (gRNA) molecule to generate sequence-specific DNA cleavage, which is a prerequisite for gene editing. Here we establish a method that enables production of gRNAs from any promoters, in any organisms, and in vitro (Gao and Zhao, 2014). This method also makes it feasible to conduct tissue/cell specific gene editing.
0 Q&A 12900 Views Apr 20, 2013
Using a Reverse Transcriptase-PCR approach spliced transcripts can be converted to cDNA, amplified and cloned into an expression plasmid. Sequencing of the obtained cDNA allows identification of the splicing events that generated the detected RNA (Grewe et al., 2012).



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.